

Преобразователь частоты векторный с поддержкой энкодера для общепромышленного и специального применения K750

Руководство по настройке и эксплуатации

Введение

Благодарим вас за покупку векторного преобразователя частоты с регулируемым крутящим моментом и высокими эксплуатационными характеристиками K750 товарного знака ONI.

Преобразователь частоты К750 предназначен для управления скоростью вращения стандартного трехфазного асинхронного электродвигателя.

Преобразователь частоты K750 имеет расширенные функции, такие как высокоэффективное векторное управление асинхронным электродвигателем, программируемые пользователем функции, фоновая программа наблюдения, платы расширения и т. д.

Преобразователь применяется в текстильном и бумажном производстве, в регулировании натяжения, протяжки проволоки, вентиляторов и насосов, в машинном оборудовании, выполнении работ по упаковке товаров, пищевом и всех видах оборудования автоматического производства.

Данное руководство по эксплуатации содержит технические характеристики, список параметров, рекомендации по настройке, расшифровку кодов неисправности и рекомендации для устранения неисправностей.

ВНИМАНИЕ

- Для описания деталей, изделия на иллюстрациях в данном руководстве представлены в разобранном состоянии. Во время использования изделия убедитесь, что корпус и крышка установлены должным образом и работают в соответствии с описанием в данном руководстве.
- Иллюстрации в данном руководстве предназначены только для разъяснения и могут отличаться от изделий, которые вы заказали.
- Постоянно улучшая нашу продукцию, мы регулярно обновляем наши изделия и их характеристики. Предоставленная информация может быть изменена без предварительного уведомления пользователя.
- Технические характеристики и программное обеспечение преобразователя могут быть изменены в лучшую сторону, не уменьшая качества изделия, без предварительного уведомления пользователя.
- Если возникли вопросы по использованию, обратитесь к региональному представителю или напрямую в центр технической поддержки.

СОДЕРЖАНИЕ

Глава 1	
плава т Правила и условия эффективного и безопасного использования	1
1.1 Меры предосторожности	
1.2 Особые указания	
1.2 Осооые указания	1
Глава 2	
Информация об изделии	9
2.1 Расшифровка артикула преобразователя частоты К750 К750	9
2.2 Модели преобразователя частоты К750	
2.3 Технические характеристики	
2.4 Габаритные и установочные размеры	
Глава 3	
Монтаж и подключение преобразователя частоты	19
3.1 Внешний вид изделия и подготовка к монтажу	19
3.1.1 Внешний вид изделия	
3.1.2 Установка пульта управления	
3.1.3 Снятие и установка крышки и панели входов	
3.2 Выбор места и пространства для монтажа	
3.3 Подключение силовой цепи и платы управления	30
3.3.1 Схема подключения	30
3.3.2 Клеммы силовой цепи	31
3.3.3 Выбор кабеля силовой цепи	34
3.3.4 Меры предосторожности при подключении силовой цепи	34
3.3.5 Клемма платы управления	35
3.4 Электромагнитная совместимость (ЭМС)	41
Глава 4	
Пульт управления	43
4.1 Описание LCD-пульта управления преобразователя	43
4.1.1 Описание LCD-пульта управления	43
4.1.2 Описание меню и навигации по меню	44
4.1.3 Меню параметров	45
4.1.4 Задание пароля пользователя	47
4.1.5 Меню аварий	48
4.1.6 Макросы	49
4.1.7 Копирование и загрузка параметров в LCD-пульт	51
4.1.8 Монитор текущего состояния	52

Глава 5 Таблица параметров	58
Глава 6	
Диагностика неисправностей и их решение	139
6.1 Неисправности и диагностика	
6.2 Тип предупреждения	
о.2 тип предупреждения	145
Глава 7	
Руководство по выбору вспомогательного оборудования	
преобразователя	146
7.1 Руководство по выбору тормозного компонента	146
7.2 Платы энкодера	148
7.3 Плата расширения входа/выхода (IO)	151
7.4 Плата расширения CANopen	153
7.5 Плата расширения Profinet	154
7.6 Плата расширения EC-K750-DSP	
7.7 Плата расширения STO	154
Глава 8	
Ежедневное техническое обслуживание преобразователей	і частоты 156
8.1 Ежедневное техническое обслуживание	156
8.1.1 Ежедневное техническое обслуживание	
8.1.2 Регулярные проверки	156
8.2 Замена изнашиваемых деталей	157
8.3 Детали гарантии	157
Приложение А	
Протокол канала связи Modbus	150

Глава 1 Правила и условия эффективного и безопасного использования

Монтаж, подключение и пуск преобразователей в эксплуатацию должны осуществляться только квалифицированным электротехническим персоналом в соответствии с «Правилами технической эксплуатации электроустановок потребителей» и «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок потребителей», прошедшим обучение по электробезопасности с присвоением группы не ниже III.

Указывает, что несоблюдение требований приведет к серьезным повреждениям оборудования, тяжелым травмам или смерти.

Указывает, что несоблюдение замечаний приведет к травмам средней тяжести или незначительным травмам и повреждению оборудования.

Внимательно прочтите данную инструкцию, чтобы иметь полное понимание о назначении преобразователя частоты и правилах его эксплуатации. Установка, ввод в эксплуатацию или техническое обслуживание могут выполняться в соответствии с этой главой. Производитель не несет никакой ответственности за любые травмы или убытки, вызванные неправильной эксплуатацией.

1.1 Меры предосторожности

- Запрещается эксплуатация преобразователя частоты при наличии повреждений корпуса, воды внутри преобразователя или отсутствии каких-либо деталей
- При несовпадении данных на табличках коробки и преобразователя частоты не устанавливайте преобразователь частоты

- Эксплуатация должна быть плавной, иначе существует опасность повреждения оборудования
- Запрещается использовать поврежденный преобразователь частоты
- Не касайтесь печатных плат голыми руками и без заземления: возможно повреждение элементов плат электростатическим разрядом

	ОПАСНОСТЬ	• Запрещается использование преобразователя частоты во взрыво- опасных помещениях, рядом с горючими материалами и т. д.
Во время установки	предупреждение	Не допускается попадание внутрь преобразователя посторонних предметов, болтов, токоведущих частей и т. д. Запрещается устанавливать преобразователь частоты в местах с повышенными вибрациями и при прямом солнечном свете При размещении преобразователя частоты в шкафу или помещении необходимо предусмотреть достаточное пространство и технические способы для обеспечения охлаждения преобразователя
	ОПАСНОСТЬ	Необходим следовать указаниям этого руководства, устройство должно использоваться квалифицированным инженером-электриком во избежание возникновения нештатной ситуации Для защиты проводов необходимо устанавливать между сетью и преобразователем автоматический выключатель или быстродействующие предохранители Во избежание поражения электрическим током, запрещается прокладка проводников при включенном электропитании Необходимо следовать региональным стандартам по прокладке проводов и заземлению. В противном случае возможно поражение электрическим током
Прокладка электрических проводов	ПРЕДУПРЕЖДЕНИЕ	 Во избежание повреждения преобразователя и возникновения пожароопасной ситуации, не подавайте напряжение электросети переменного тока на выходные клеммы U/T1, V/T2 и W/T3, предназначенные для подключения двигателя. Проследите, чтобы напряжение питания силовой цепи подавалось на клеммы ввода электропитания R/L1, S/L2 и T/L3 Запрещается подключать тормозной резистор непосредственно к клеммам «+» и «-» шины постоянного тока, иначе может произойти возгорание! Обратитесь к рекомендациям руководства для выбора используемого сечения проводников, иначе может произойти несчастный случай! ВНИМАНИЕ! Обеспечьте надежное подключение провода заземления к контакту РЕ для безопасности персонала ВНИМАНИЕ! Затягивайте все винты контактных зажимов с усилием, соответствующим значению, указанному в руководстве по эксплуатации. Сильный нагрев плохо затянутых электрических соединений может привести к возникновению пожароопасной ситуации
Перед	ОПАСНОСТЬ	Убедитесь, что уровень напряжения источника входного питания соответствует номинальному напряжению преобразователя. Проверьте правильность подключения проводки входных клемм питания (R, S, T) и выходных клемм (U, V, W) ЗАПРЕЩАЕТСЯ! Проводить испытания на электрическую прочность и сопротивление изоляции преобразователя
включением	предупреждение	 Во избежание поражения электрическим током, перед включением электропитания необходимо установить все крышки на штатные места Все вспомогательные устройства должны быть подключены должным образом в соответствии с инструкциями этого руководства, иначе это может привести к несчастному случаю

После включения питания	ОПАСНОСТЬ	 Во избежание поражения электрическим током, запрещается использовать преобразователь частоты без крышек и снимать крышки при включенном электропитании Если световой индикатор не светится после включения, пульт управления не отображает текущее состояние, незамедлительно отключите электропитание, не касайтесь любых входных и выходных клемм электропривода, в противном случае есть риск поражения электрическим током
	ПРЕДУПРЕЖДЕНИЕ	 Если требуется идентификация параметров электродвигателя, исключите заранее возможность травмы при вращении двигателя Не меняйте произвольно параметры электропривода, установленные производителем, иначе это может вызвать повреждение устройства
	ОПАСНОСТЬ	 Во избежание травм и ожогов, не касайтесь вентилятора охлаждения, радиатора и тормозного резистора во время работы и после отключения электропитания до их остывания Если вы неквалифицированный технический работник, не открывайте крышки преобразователя частоты и не изменяйте параметры, чтобы не повредить оборудование и не получить травмы
Во время работы	ПРЕДУПРЕЖДЕНИЕ	Во время работы привода следует избегать попадания чего-либо внутрь устройства, в противном случае это может привести к повреждению устройства ЗАПРЕЩАЕТСЯ! Производить включение и выключение преобразователя частоты с помощью контактора чаще 1 раза в 1 час ЗАПРЕЩАЕТСЯ! Запускать и останавливать двигатель с помощью электромагнитного контактора
Техническое обслуживание	ОПАСНОСТЬ	Не находитесь рядом с оборудованием во время ремонта или технического обслуживания: есть риск поражения электрическим током Во избежание поражения электрическим током перед техническим обслуживанием необходимо отключить электропитание за 10 минут до начала Не осуществляйте техническое обслуживание и ремонт привода без человека, который имеет профессиональные навыки Параметры должны быть установлены и проверены после замены привода
ŕ	ПРЕДУПРЕЖДЕНИЕ	РЕКОМЕНДУЕТСЯ перед выполнением работ по техническому обслуживанию преобразователя убедиться, что двигатель отсоединен от преобразователя РЕКОМЕНДУЕТСЯ один раз в 6 месяцев подтягивать винты контактных зажимов, давление которых со временем ослабевает из-за циклических изменений температуры окружающей среды и пластической деформации металла зажимаемых проводников

1.2 Особые указания

• Использование контактора

Если контактор установлен на стороне входа питания преобразователя, не допускайте частого включения-выключения контактора. Интервал между включением и выключением контактора должен быть не менее одного часа. Частая зарядка и разрядка сократят срок службы конденсаторов.

Если контактор установлен между выходными клеммами преобразователя (U, V, W) и электродвигателем, убедитесь, что при отключении контактора преобразователь частоты находится в режиме останова. В противном случае преобразователь будет поврежден.

• Защита от грозового импульса

В преобразователе частоты К750 установлено устройство от импульсных перенапряжений. Но все же в местах с частыми грозовыми разрядами и большими импульсными перенапряжениями в сети необходимо установить дополнительно внешнее устройство защиты от импульсных перенапряжений.

Использование преобразователя частоты выше 1000 метров над уровнем моря

При использовании преобразователя частоты на высоте больше 1000 метров необходимо произвести понижение мощности. Просьба обратиться в техническую поддержку за консультациями.

Фильтрация вывода

Когда длина кабеля между преобразователем и двигателем превышает 100 метров, РЕКОМЕНДУЕТСЯ использовать моторный дроссель переменного тока, чтобы избежать перегрузки преобразователя по току, вызванному чрезмерной собственной емкостью кабеля.

Для соответствия требованиям ЭМС на выходе и входе преобразователя при необходимости устанавливаются ЭМС-фильтры.

Запрещается устанавливать на выходе преобразователя частоты конденсаторы или варисторы для улучшения гармонической составляющей напряжения.

• О перегреве двигателя и шуме

Так как выходное напряжение преобразователя— это ШИМ-волна, которая содержит определенную степень гармонических колебаний, то превышение температуры двигателя, шум и вибрация по сравнению с такой же частотой работы будут слегка увеличены.

• Утилизация

Электролитические конденсаторы в главной цепи и электролитические конденсаторы на печатной плате могут взорваться при сжигании, а при сжигании пластиковых деталей образуются ядовитые газы. Пожалуйста, утилизируйте изделия как промышленные отходы.

• Область применения

Это изделие не предназначено для использования в оборудовании, выполняющем жизненно важные функции. Для использования данного изделия в мобильных, медицинских, аэрокосмических, ядерных или других устройствах специального назначения обратитесь в нашу компанию для получения более подробной информации.

Этот продукт изготовлен под строгим контролем качества и должен быть оснащен устройством безопасности, если он используется в устройстве, повреждение которого может вызвать серьезную аварию или повреждение из-за выхода из строя преобразователя.

Глава 2 Информация об изделии

2.1 Расшифровка артикула преобразователя частоты К750



Рисунок 2.1 — Расшифровка артикула модели преобразователя частоты

2.2 Модели преобразователя частоты К750

Таблица 2.1 — Модели преобразователя частоты К750

Артикул	Полная мощность HD/ND*, кВА	Входной ток HD/ND*, A	Выходной ток HD/ND*, A	Мощность двигателя HD/ND*, кВА	Тепловые потери, кВт	Габарит	
	3 фазы: 400 В,	50/60 ГЦ					
K750-33-075HTM	1,5	3,4	2,5	0,75	0,011	1	
K750-33-15NTM	3	5	4,2	1,5	0,022	1	
K750-33-22NTM	4	5,8	5,6	2,2	0,033		
K750-33-455NTM	5,9/8,9	10,5/14,6	9,4/13	4/5,5	0,06	1	
K750-33-55N75NTM	8,9/11	14,6/20,5	13/17	5,5/7,5	0,22	2	
K750-33-75N11TM	11/17	20,5/26	17/25	7,5/11	0,3		
K750-33-1115TM	17/21	26/35	25/32	11/15	0,44	3	
K750-33-1518TM	21/24	35/38,5	32/37	15/18	0,6	1	
K750-33-1822TM	24/30	38,5/46,5	37/45	18/22	0,72	4	
K750-33-1822TRM	24/30	38,5/46,5	37/45	18/22	0,72		
K750-33-2230TM	30/40	46,5/62	45/60	22/30	0,88		
K750-33-2230TRM	30/40	46,5/62	45/60	22/30	0,88		
K750-33-3037M	40/50	62/76	60/75	30/37	1,2	5	
K750-33-3037RM	40/50	62/76	60/75	30/37	1,2	1	
K750-33-3037TM	40/50	62/76	60/75	30/37	1,2		
K750-33-3037TRM	40/50	62/76	60/75	30/37	1,2	1	
K750-33-3745M	50/60	76/92	75/91	37/45	1,5	1	
K750-33-3745RM	50/60	76/92	75/91	37/45	1,5	1	
K750-33-3745TM	50/60	76/92	75/91	37/45	1,5		
K750-33-3745TRM	50/60	76/92	75/91	37/45	1,5		
K750-33-4555M	60/85	92/113	91/112	45/55	1,8	6	
K750-33-4555RM	60/85	92/113	91/112	45/55	1,8	1	
K750-33-4555TM	60/85	92/113	91/112	45/55	1,8	1	
K750-33-4555TRM	60/85	92/113	91/112	45/55	1,8	1	
K750-33-5575M	85/104	113/157	112/150	55/75	2,2	1	
K750-33-5575RM	85/104	113/157	112/150	55/75	2,2	1	
K750-33-5575TM	85/104	113/157	112/150	55/75	2,2	1	
K750-33-5575TRM	85/104	113/157	112/150	55/75	2,2		
K750-33-7590M	104/112	157/170	150/176	75/90	3,0	7	
K750-33-7590RM	104/112	157/170	150/176	75/90	3,0	1	
K750-33-7590TM	104/112	157/170	150/176	75/90	3,0		
K750-33-7590TRM	104/112	157/170	150/176	75/90	3,0	1	
K750-33-90110M	112/145	170/220	176/210	90/110	3,6	1	
K750-33-90110RM	112/145	170/220	176/210	90/110	3,6	1	
K750-33-90110TRM	112/145	170/220	176/210	90/110	3,6		
K750-33-90110TM	112/145	170/220	176/210	90/110	3,6	1	
K750-33-110132M	145/170	220/258	210/253	110/132	4,4	8	

Продолжение таблицы 2.1

Артикул	Полная мощность HD/ND*, кВА	Bходной ток HD/ND*, A	Выходной ток HD/ND*, A	Мощность двигателя HD/ND*, кВА	Тепловые потери, кВт	Габарит
	3 фазы: 400 В,	50/60 ГЦ				
K750-33-110132RM	145/170	220/258	210/253	110/132	4,4	8
K750-33-132160M	170/210	258/320	253/304	132/160	5,3	9
K750-33-132160RM	170/210	258/320	253/304	132/160	5,3	1
K750-33-160185M	210/245	320/372	304/340	160/185	6,4	
K750-33-160185RM	210/245	320/372	304/340	160/185	6,4	
K750-33-185200M	245/250	372/380	340/377	185/200	7,4	10
K750-33-185200RM	245/250	372/380	340/377	185/200	7,4	1
K750-33-200220M	250/280	380/425	377/426	200/220	8,0	
K750-33-200220RM	250/280	380/425	377/426	200/220	8,0	
K750-33-220250RM	280/315	425/479	426/465	220/250	8,8	11
K750-33-250280RM	315/350	479/532	465/520	250/280	10,0	
K750-33-280315RM	350/385	532/585	520/585	280/315	11,2	12
K750-33-315355RM	385/420	585/638	585/650	315/355	12,6	
K750-33-355400RM	420/470	638/714	650/725	355/400	14,2	13
K750-33-400450RM	470/530	714/800	725/820	400/450	16,0	
K750-33-450500RM	530/580	800/880	820/930	450/500	18,0	14
K750-33-500560RM	580/660	880/950	930/1020	500/560	20,0	
K750-33-560630RM	660/710	950/1080	1020/1120	560/630	22,4	15
K750-33-630RM	710	1080	1120	630	25,2	
K750-33-710RM	790	1200	1260	710	28,4	

^{*} HD — режим постоянной нагрузки (с постоянным моментом).

ND — режим переменной нагрузки (с переменным моментом).

2.3 Технические характеристики

Таблица 2.2 — Технические характеристики К750

Наимен	ование показателя	Технические характеристики
ТИКИ	Входное напряжение	Трехфазное 400 В АС
Входные характеристики	Допустимый диапазон напряжения	323÷483
хара	Входная частота	50/60 Гц, среднее отклонение менее чем 5 %
ые Этики	Выходное напряжение	Трехфазный: 0 ÷ входное напряжение
Выходные характеристики	Перегрузочная способность	Тяжелая нагрузка (HD) — 150 % в течение 60 с, 220 % в течении 1 с, не чаще 1 раза в 10 минут Насосы, вентиляторы (ND) — 120 % в течение 60 с, не чаще 1 раза в 10 минут
	Режим управления	Скалярное управление (U/f) Векторное управление в разомкнутом контуре (SVC) Векторное управление с обратной связью (VC)
	Режим работы	Управление скоростью, управление крутящим моментом (SVC и VC)
	Диапазон скорости	1:100 (U/f) 1:200 (SVC) 1:1000 (VC)
	Погрешность управления скоростью	0,5 % (U/f) 0,2 % (SVC) 0,02 % (VC)
	Срабатывание скорости	5 Γц (U/f) 20 Γц (SVC) 50 Γц (VC)
Управление	Диапазон частот	0,00÷600,00 Γц (U/f) 0,00÷200,00 Γц (SVC) 0,00÷400,00 Γц (VC)
У	Разрешение настройки частоты	Цифровая настройка: 0,01 Гц Аналоговая настройка: максимальная частота × 0,1 %
	Пусковой крутящий момент	150 % / 0,5 Γц (U/f) 180 % / 0,25 Γц (SVC) 200 % / 0 Γц (VC)
	Погрешность регулиро- вания крутящего момента	SVC: до 5 Гц $-$ 10 %, свыше 5 Гц $-$ 5 % VC: 3,0 %
	Кривая напряжение/ частота	Тип кривой напряжения/частоты: прямая линия, многоточечный, функция мощности, разделение напряжение/частота Усиление крутящего момента: автоматическое увеличение крутящего момента (заводские настройки), ручное увеличение крутящего момента
	Ускорение и замедление	Поддержка кривой ускорения и замедления линейного и S-типа; 4 группы времени ускорения и замедления, диапазон настройки 0,00÷60 000 с

Продолжение таблицы 2.2

Наимено	вание показателя	Технические характеристики
	Регулирование напряжения шины постоянного тока	Защита от перенапряжения в цепи постоянного тока при замедлении Управляемое замедление при пониженном напряжении питающей сети: перевод двигателя в генераторный режим с помощью управления выходной частотой для поддержания необходимого напряжения цепи постоянного тока и другие функции
	Несущая частота	1÷12 кГц (изменяется в зависимости от мощности преобразователя)
	Способ запуска	Ускорение (может быть наложено динамическое торможение) Поиск скорости
Управление	Способ остановки	Остановка с замедлением (может быть применено динамическое торможение) Выбег
VA .	Функции основного управления	Толчковая скорость, контроль частоты, 16 ступенчатых скоростей, избежание резонансных частот, работа при частоте качаний, переключение времени ускорения и замедления, разделение напряжения и частоты, динамическое торможение, ПИД-регулирование процесса, функция сна и работы, встроенная простая логическая ПЛК, виртуальный вход и выходы, встроенное устройство задержки, встроенный блок сравнения и логический блок, резервное копирование и восстановление параметров, протокол ошибок, сброс аварийного состояния, две группы свободного переключения параметров двигателя, клеммы увеличения и понижения скорости
	Клавиатура	Светодиодная цифровая клавиатура Клавиатура управления с ЖК-дисплеем (опционально)
	Канал связи	Modbus (RS-485) Modbus TCP (Опция) Profinet (Опция) CanOpen (Опция)
	Плата энкодера (опционально)	Интерфейсная плата инкрементного энкодера (дифференциальный выход и открытый коллектор) Резольвер
Функции	Входы	Стандарт: 5 цифровых входов Вход HDI поддерживает импульсный режим до 50 кГц: 2 аналоговых входа поддерживают входное напряжение 0÷10 В или 0/4÷20 мА Дополнительная плата (опция): 4 цифровых входа 2 аналоговых входа 2 мналоговых входа-10÷ + 10 В Функция STO
	Выходные клеммы	Стандарт: 1 цифровой выход 1 высокочастотный импульсный выход (открытый коллектор) 0÷50 кГц 2 реле 2 аналоговых выхода, поддерживают выходной ток 0÷20 мА или выходное напряжение 0÷10 В Дополнительная плата: 4 цифровых выхода
Защита	Обратитесь к главе 6 «Диаг	тностирование неисправностей и меры по устранению»
	1 1111	

Продолжение таблицы 2.2

Наимен	ование показателя	Технические характеристики			
	Место установки	В помещении — без прямого солнечного света, пыли, коррозионного газа, горючего газа, паров масла, испарений, капель или соли, токопроводящей пыли, окружающая среда невзрывоопасная, не содержащая агрессивных газов и паров, не насыщенная токопроводящей пылью и водяными парами Степень загрязнения 2			
я среда	Высота над уровнем моря	1000 м При установке на высоте от 1000 до 3000 м номинальный выходной ток будет уменьшаться на 1 % на каждые 100 м			
температура окружаю среды Влажность	Температура окружающей среды	От -10 до +40 °C Максимально допустимая температура +50 °C при использовании преобр зователя частоты с понижением номинального тока на 1,5 % на 1 °C в диапазоне температур от +40 до +50 °C			
	Влажность	Относительная влажность — 75 % при температуре плюс 15 °C. Допускается эксплуатация преобразователей при относительной влажности 90 % и температуре плюс 25 °C			
	Вибрация	Не более 5,9 м/с ² (0,6 g)			
	Температура хранения	От -20 до +70 °C			
Φ	Способ установки	Настенный, в электротехническом шкафу с дополнительной вентиляцией шкафа Группа механического исполнения M2 по ГОСТ 17516.1			
Другое	Степень защиты	IP20 πο ΓΟCT 14254 (IEC 60529)			
Ā T	Лакокрасочное покрытие	Толщина лакокрасочного покрытия до 500 мкм для дополнительной защиты от агрессивной среды			
Способ охлаждения		Воздушное принудительное охлаждение			
ЭМС	Соответствие ЭМС фильтра	Встроенный ЭМС фильтр соответствует стандартам электромагнитной совме- стимости для бытового и промышленного применения EN 61800-3/ Категория 3, вторичная среда (промышленность)			

2.4 Габаритные и установочные размеры

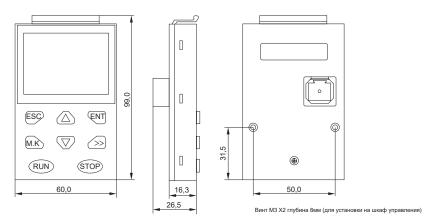


Рисунок 2.2 — Габаритные размеры LCD-пульта управления (мм)

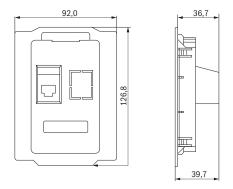


Рисунок 2.3 — Размеры монтажной скобы пульта управления (мм)

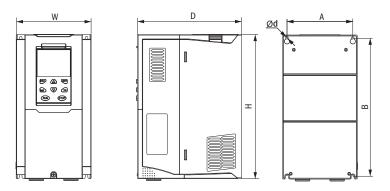


Рисунок 2.4 — Габаритные и установочные размеры габаритов 1÷3 (0,75÷15 кВт)

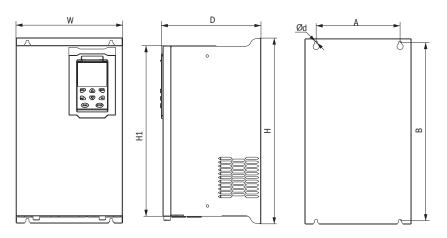


Рисунок 2.5 — Габаритные и установочные размеры габаритов $4\div7$ ($18,5\div90$ кВт)

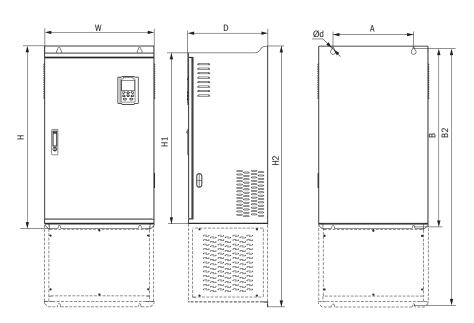


Рисунок 2.6 — Габаритные и установочные размеры габаритов 8÷11 (110÷250 кВт)

ПРИМЕЧАНИЕ: Габариты 8÷10 (110÷200 кВт) — стандартная модель без реактора и нижнего основания.

Реактор и нижнее основание — опционально.

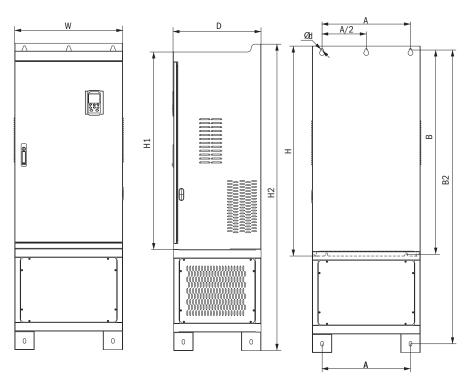


Рисунок 2.7 — Габаритные и установочные размеры габарита 12 (280÷315 кВт)

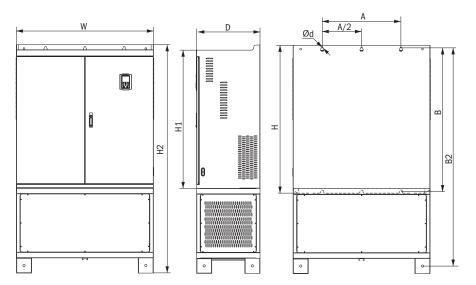


Рисунок 2.8 — Габаритные и установочные размеры габаритов 13÷15 (355÷710 кВт)

Таблица 2.3 — Габаритные и установочные размеры

Габарит Мощность,		Внешний ви	д и устан	ювочные	е габари	ты, мм					
	кВт	А	В	B2	Н	H1	H2	W	D	d	Крепежный винт
1	0,75÷4	87	206,5	-	215	-	-	100	170	Ø5,0	M4×16
2	5,5÷7,5	113	239,5	-	250	-	-	130	180	Ø5,0	M4×16
3	11÷15	153	299	-	310	-	-	170	193	Ø6,0	M5×16
4	18,5÷22	165	350	-	370	335	-	210	205	Ø6,0	M5×16
5	30÷37	218	438	-	452,5	424	-	260	230	Ø7,0	M6×16
6	45÷55	250	535	-	555	520	-	320	275	Ø10,0	M8×20
7	75÷90	280	620	-	640	605	-	350	290	Ø10,0	M8×20
8	110	280	695	915	715	660	935	370	313	Ø11,0	M8×25
9	132÷160	280	705	925	725	670	945	360	338	Ø11,0	M8×25
10	185÷200	360	795	1145	816	762	1166	490	358	Ø11,0	M10×25
11	220÷250	360	795	1145	816	762	1166	490	358	Ø11,0	M10×25
		Установка н	а покрыт	ие пола:	H2×W×	D = 1166	6×490×3	358			
12	280÷315	450	1045	1495	1075	1005	1560	550	450	Ø13,0	M12×30
		Установка н	а покрыт	ие пола:	H2×W×	D = 1560	0×550×4	150			
13	355÷400	630	1013	1425	1045	970	1495	730	450	Ø13,0	M12×30
		Установка на покрытие пола: H2×W×D = 1495×730×450									
14	450÷500	660	1063	1505	1095	1020	1575	785	450	Ø13,0	M12×30
		Установка на покрытие пола: H2×W×D = 1575×785×450									
15	560÷710	Только для у	Только для установки на покрытие пола: H2×W×D = 1800×1080×500 M12×30								

Глава 3 Монтаж и подключение преобразователя частоты

3.1 Внешний вид изделия и подготовка к монтажу

3.1.1 Внешний вид изделия

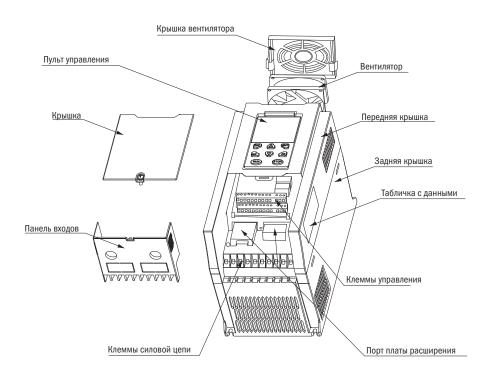


Рисунок 3.1 — Внешний вид преобразователей мощностью 0,75÷15 кВт

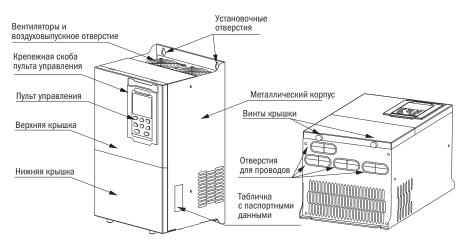


Рисунок 3.2 — Внешний вид преобразователей мощностью 18,5÷90 кВт

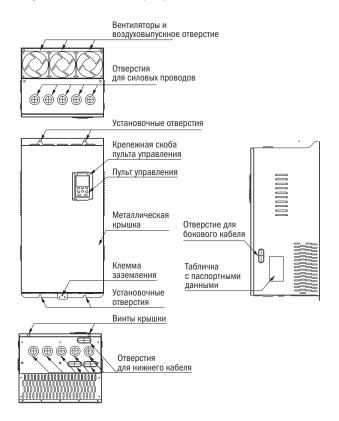


Рисунок 3.3 — Внешний вид преобразователей мощностью 110÷250 кВт

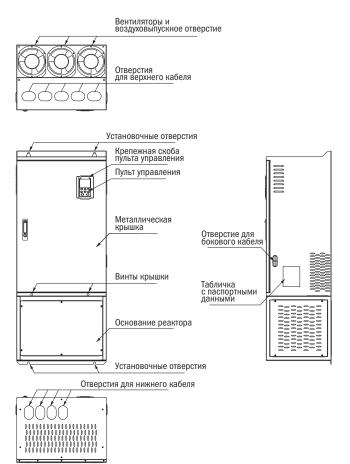


Рисунок 3.4 — Внешний вид преобразователей мощностью 110÷250 кВт (с нижним основанием)

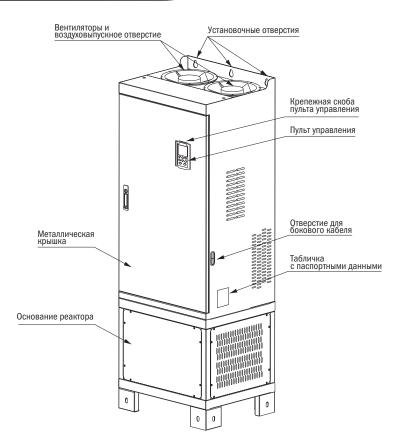


Рисунок 3.5 — Внешний вид преобразователей мощностью 280÷710 кВт

3.1.2 Установка пульта управления

Размеры пульта управления преобразователя частоты K750 показаны на рисунке 2.2. При установке кнопочной панели снаружи шкафа управления используйте два винта, расположенных на боковой стороне кнопочной панели, чтобы закрепить ее.

Если вы хотите установить пульт управления на шкаф управления, чтобы избежать выступания пульта управления наружу шкафа, используйте монтажную скобу пульта управления.

Размеры монтажной скобы показаны на рисунке 2.3. Размеры отверстия под монтажную скобу показаны на рисунке 3.6.

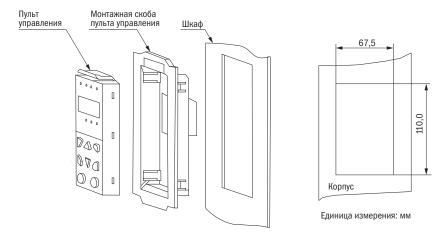
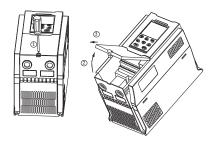
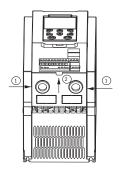



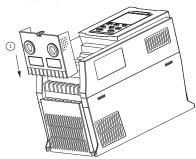
Рисунок 3.6 — Схема установки монтажной скобы пульта управления и размеры технологического отверстия в шкафу управления

3.1.3 Снятие и установка крышки и панели входов

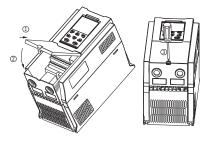

Габарит $1\div3$ (0,75 \div 15 кВт). Снятие и установка крышки и панели входов

этапы снятия

Этап 1: Откройте верхнюю крышку


- 1. Открутите винты крышки
- 2. Поднимите крышку
- 3. Снимите переднюю крышку

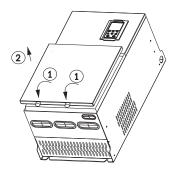
Этап 2: Снимите панель входов


- Удерживайте бока панели входов большим и средним пальцем
- 2. Нажмите, чтобы освободить скобу, и выньте из панели

ЭТАПЫ УСТАНОВКИ

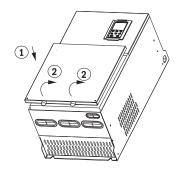
Этап 1: Установите панель входов

1. Поставьте панель входов сверху вниз в позицию установки, чтобы обеспечить изгибание платы


Этап 2: Установите верхнюю крышку

- 1. Наклоните переднюю крышку по диагонали спереди к загрузочной станции
- 2. Опустите крышку около панели разъемов
- 3. Затяните винты на крышке

Рисунок 3.7 — Снятие и установка крышки и панели входов габарит 1÷3 (0,75÷15 кВт)


Габариты 4÷7 (18,5÷90 кВт). Снятие и установка крышки

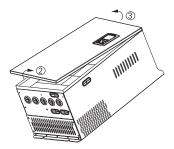
ШАГИ СНЯТИЯ

- 1. Открутите два винта на дне крышки
- 2. Снимите вертикально крышку

ШАГИ УСТАНОВКИ

- 1. Закройте крышку вертикально
- 2. Затяните два винта на дне крышки

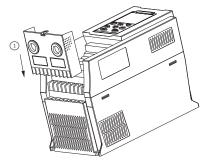
Рисунок 3.8 — Снятие и установка крышки габариты 4÷7 (18,5÷90 кВт)


Габариты 8÷9 (110÷160 кВт). Снятие и установка крышки

этапы снятия

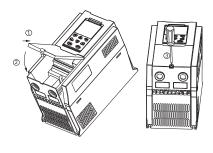
Этап 1

1. Открутите два винта на дне крышки


Этап 2

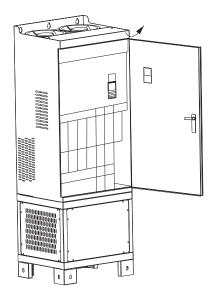
- Держите обе стороны крышки двумя руками и поднимите нижнюю часть крышки
- Нажмите и поднимите всю крышку (будьте аккуратны, или вы можете зажать кабель пульта управления)

Рисунок 3.9 — Снятие и установка крышки габариты 8÷9 (110÷160 кВт) (лист 1 из 2)



ЭТАПЫ УСТАНОВКИ

1. Отключите кабель пульта управления



Этап 2

- 1. Установите верх крышки
- 2. Затяните винты на дне крышки

Рисунок 3.9 (лист 2 из 2)

Начиная с габарита 10 (185 кВт)

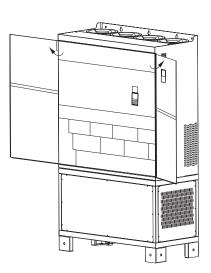


Рисунок 3.10 — Снятие и установка крышки начиная с габарита 10 (185 кВт)

3.2 Выбор места и пространства для монтажа

Одиночная установка преобразователя частоты

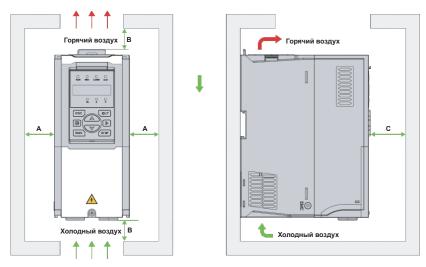


Рисунок 3.11 — Одиночный монтаж преобразователя частоты (габариты 1-7)

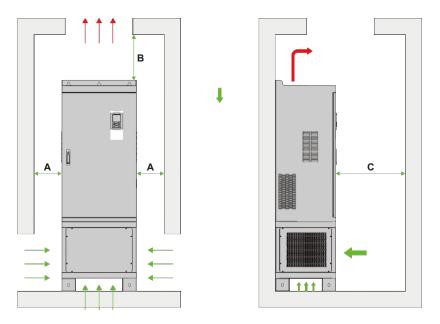


Рисунок 3.12 — Одиночный монтаж преобразователя частоты (габариты 8-15)

Таблица 3.1— Размеры для одиночного монтажа преобразователя частоты

Габариты	Рекомендуемое ра	Рекомендуемое расстояние, мм					
Габариты 1-3	A ≥ 20	A ≥ 20 B ≥ 200 C ≥ 20					
Габарит 4	A ≥ 50	B ≥ 200	C ≥ 20				
Габариты 5-7	A ≥ 50	B ≥ 300	C ≥ 20				
Габариты 8-15	A ≥ 100	B≥300	C ≥ 20				

Множественная установка преобразователей частоты

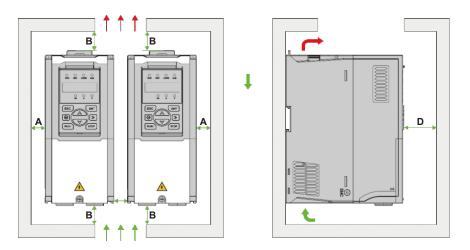


Рисунок 3.13 — Множественный монтаж преобразователей частоты (габариты 1-7)

Таблица 3.2 – Размеры для множественного монтажа преобразователей частоты

Габариты	Рекомендуемое расстояние, мм					
Габариты 1-3	A ≥ 20	B ≥ 200	C ≥ 20	D≥20		
Габарит 4	A ≥ 50	B ≥ 200	C ≥ 50	D≥20		
Габариты 5-7	A ≥ 50	B ≥ 300	C ≥ 50	D≥20		

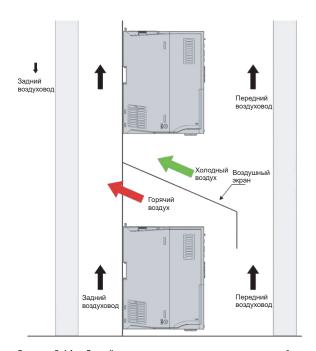


Рисунок 3.14 — Другой вариант множественного монтажа преобразователей частоты (габариты 1-5)

3.3 Подключение силовой цепи и платы управления

3.3.1 Схема подключения

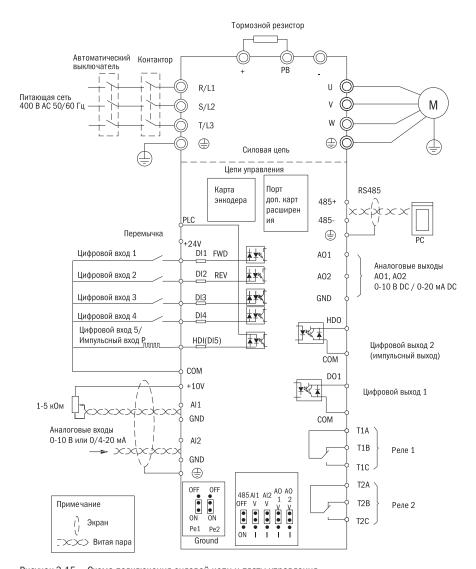


Рисунок 3.15 — Схема подключения силовой цепи и платы управления

3.3.2 Клеммы силовой цепи

(A)	(A)								
	+	PB	-	R	S	Т	U	V	w
(<u>=</u>)	DC- LI NK			POWER			MOTOR		

Рисунок 3.16 — Клеммы силовой цепи габаритов 1, 2 и 3 (0,75÷15 кВт)

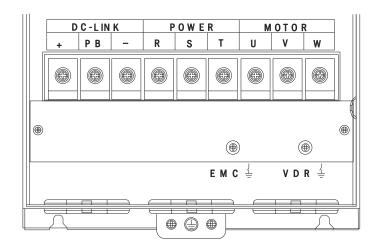


Рисунок 3.17 — Клеммы силовой цепи габарита 4 (18,5÷22 кВт)

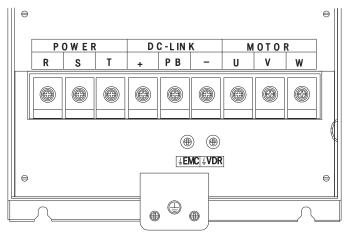


Рисунок 3.18 — Клеммы силовой цепи габарита 5 (30÷37 кВт)

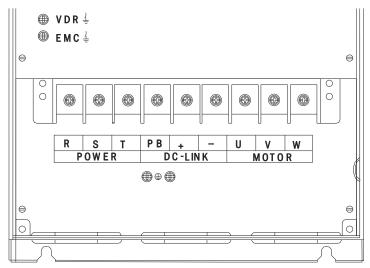
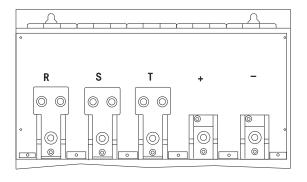



Рисунок 3.19 — Клеммы силовой цепи габаритов 6 и 7 (45÷90 кВт)

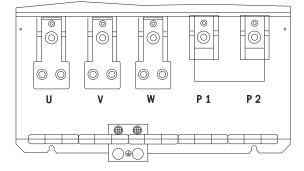


Рисунок 3.20 — Клеммы силовой цепи габаритов 8÷10 (110÷250 кВт)

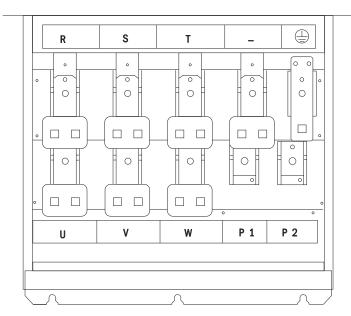


Рисунок 3.21 — Клеммы силовой цепи габаритов 11÷15 (280÷710 кВт)

Таблица 3.3 — Описание функций клемм силовой цепи преобразователя

Клемма	Инструкция к функции
R, S, T	Клеммы подключения питающей сети трехфазного переменного тока
U, V, W	Клеммы подключения трехфазного асинхронного двигателя
+ ,-	Положительная и отрицательная клеммы внутренней шины постоянного тока подключены к внешнему тормозному блоку
P1, P2	Р1 и Р2 – клеммы для подключения дросселя постоянного тока. Установите перемычку между Р1 и Р2, когда дроссель постоянного тока не используется (Р2 эквивалентна " + " шины постоянного тока)
+ , PB	Клемма подключения тормозного резистора при встроенном тормозном блоке
<u>_</u>	Клемма заземления
EMC, VDR	Защитный конденсатор и винт выбора способа заземления варистора (на габаритах 1÷3 винт ЭМС находится на левой стороне корпуса)

3.3.3 Выбор кабеля силовой цепи

Таблица 3.4 – Характеристики кабеля силовой сети и момент затяжки клемм

Номер модели	Клемма	питания		Клемма заземления			
	Винт	Момент затяжки, Н∙м	Сечение кабеля, мм ²	Винт	Момент затяжки, Н∙м	Сечение кабеля, мм ²	
K750-33-075H	М3	1,5	2,5	M3	1,5	2,5	
750-33-15N M3 1		1,5	2,5	M3	1,5	2,5	
K750-33-22N	М3	1,5	4	M3	1,5	4	
K750-33-455N	M4	2	6	M4	2	6	
K750-33-55N75N	M4	2	6	M4	M4 2		
K750-33-75N11	M4	2	6	M4	2	6	
K750-33-1115	M5	4	10	M5	4	10	
K750-33-1518	M5	4	10	M5	4	10	
K750-33-1822	M6	4	10	M6	4	10	
K750-33-2230	M6	4	16	M6	4	16	
K750-33-3037	M8	10	16	M6	5	10	
K750-33-3745	M8	10	16	M6	5	10	
K750-33-4555	M8	10	25	M6	5	16	
K750-33-5575	M8	10	35	M6	5	16	
K750-33-7590	M10	20	50	M8	8	25	
K750-33-90110	M10	20	70	M8	8	35	
K750-33-110132	M10	20	120	M8	10	70	
K750-33-132160	M12	35	150	M8	10	70	
K750-33-160185	M12	35	185	M8	10	70	
K750-33-185200	M12	35	95×2	M10	15	95	
K750-33-200220	M12	35	95×2	M10	15	95	
K750-33-220250	M12	35	120×2	M10	15	120	
K750-33-250280	M12	35	120×2 M10		15	120	
K750-33-280315 M12		35	150×2	M12	15	120	
K750-33-315355	M12	35	150×2	M12	15	150	
K750-33-355400	M12	35	150×2	M12	15	150	
K750-33-400450	M12	35	185×2	M12	15	185	
K750-33-450500	M12	35	150×3	M12	35	185	
K750-33-500560 M12		35	150×3	M12	35	185	
K750-33-560630	M12	35	185×3	M12	35	240	
K750-33-630 M12		35	185×3	M12	35	240	
K750-33-710	M12	35	185×3	M12	35	240	

3.3.4 Меры предосторожности при подключении силовой цепи

(1) Кабель питания

- Запрещено подключать кабель питания к выходным клеммам преобразователя, иначе внутренние компоненты преобразователя повредятся.
- Для обеспечения защиты входной стороны от сверхтоков и удобства отключения электропитания при проверке, преобразователь должен быть подключен к сети питания с помощью автоматических выключателей, быстродействующих предохранителей и контакторов.

 Пожалуйста, проверьте характеристики электропитания. Напряжение должно совпадать с указанным на табличке с паспортными данными, несовпадение может привести к повреждению преобразователя.

(2) Цепь постоянного тока

- Не подключайте тормозной резистор непосредственно к «+, -»: может произойти повреждение преобразователя или возгорание.
- При использовании внешнего тормозного блока обратите внимание на «+, -». Их нельзя поменять местами, иначе это может вызвать повреждение преобразователя и тормозного блока или возгорание.

(3) Кабель электродвигателя

- Запрещено закорачивать или заземлять выходные клеммы преобразователя, иначе внутренние компоненты преобразователя повредятся.
- Избегайте короткого замыкания выходных кабелей на корпус преобразователя. В противном случае существует опасность поражения электрическим током.
- Запрещено подключать выходные клеммы преобразователя к конденсатору или LC/RC-фильтру с фазным выводом, иначе внутренние компоненты преобразователя могут быть повреждены.
- Когда контактор установлен между преобразователем и двигателем, запрещено включать/ выключать контактор во время работы преобразователя. В противном случае в инвертор будет протекать большой ток, что приведет к срабатыванию защиты инвертора.
- Длина кабеля между преобразователем и двигателем
 Если кабель между преобразователем и двигателем слишком длинный, ток утечки высоких гармоник на выходном кабеле будет оказывать неблагоприятное воздействие на преобразователь и периферийные устройства. Предполагается, что при длине кабеля двигателя более 100 м должен быть установлен выходной моторный дроссель переменного тока. Также необходимо настроить несущую частоту.

3.3.5 Клемма платы управления

Рисунок 3.22 — Расположение клемм платы управления К750

Таблица 3.5 – Функции и технические характеристики клемм платы управления

Тип	Название	Наименование	Описание функций клеммы
Аналоговые	+ 10V	Источник напряжения	10,10 ±1% B DC
входы			Максимальный выходной ток: 10 мA, он обеспечивает питание внешнего потенциометра с диапазоном сопротивления: 1÷5 кОм
	GND	Общая клемма аналоговых входов	Внутренняя изоляция от общей клеммы СОМ
	Al1	Аналоговый вход 1	Входное напряжение: 0÷10 В DC Полное сопротивление: 22 кОм
			Входной ток: 0/4÷20 мА Полное сопротивление 500 Ом
			Тип сигнала переключается с помощью переключателей на плате управления. По умолчанию работает на входном напряжении
	AI2	Аналоговый вход 2	Входное напряжение: 0÷10 В DC Полное сопротивление: 22 кОм
			Входной ток: 0/4÷20 мА Полное сопротивление: 500 Ом
			Тип сигнала переключается с помощью переключателей на плате управления. По умолчанию работает на входном напряжении
Аналоговый выход	AO1	Аналоговый выход 1	Выходное напряжение: 0÷10 В DC Полное сопротивление: ≥10 кОм Выходной ток 0÷20 мА
			Полное сопротивление: 200÷500 Ом Тип сигнала переключается с помощью переключателей на плате управления. По умолчанию работает на входном напряжении
	A02	Аналоговый выход 2	Выходное напряжение: 0÷10 В DC Полное сопротивление: ≥10 кОм
			Выходной ток: 0÷20мА Полное сопротивление: 200÷500 Ом
			Тип сигнала переключается с помощью переключателей на плате управления. По умолчанию работает на входном напряжении
	GND	Общая клемма аналоговых выходов	Внутренняя изоляция от общего контакта (СОМ)
Цифровые входы	+ 24V	Источник напряжения	24 ±10 % B DC Внутренняя изоляция от заземляющего контакта (GND)
			Максимальный выходной ток: 200 мА
			24 В, как правило, используется как источник питания цифровых входов и выходов, а также как питание внеш- него датчика
	PLC	Клемма цифрового входа простая	Заводская настройка по умолчанию — это подключение ПЛК с + 24 В. Клемма для включения и выключения входа реле пониженного и повышенного уровня
			При использовании внешнего сигнала к приводу DI1÷DI5 он разъединит контактный разъем ПЛК от + 24 В

Тип	Название	Наименование	Описание функций клеммы
	СОМ	Общая клемма цифровых входов и источника питания + 24 В	Внутренняя изоляция от GND
	DI1÷DI4	Клемма цифрового входа	Оптопара
		1÷4	Диапазон частоты сигналов: 0÷200 Гц
			Диапазон напряжения: 10÷30 В DC
	HDI	Клемма цифрового входа /	Клемма цифрового входа: такой же, как DI1÷DI4
		импульсный вход	Максимальная частота импульсов: 50 кГц
			Диапазон напряжения: 10÷30 В DC
Switch	D01	Выход с открытым коллек-	Изоляция оптосоединителя
output		тором	Диапазон напряжения: 0÷24 В DC
			Допустимый ток нагрузки: 50 мА
	HD0	Выход с открытым коллек-	Выход с открытым коллектором: такой же, как DO1
		тором /импульсный выход	Максимальная частота импульсов: 50 кГц
Выход	T1A/T1B/	Выход реле	Т1А-Т1В: нормально замкнуто
реле 1	T1C		Т1А-Т1С: нормально разомкнуто
			Номинальная нагрузка: 250 В АС, 3 А 30В DC, 1 А
Выход	T2A/T2BT2C	Выход реле	Т2А-Т2В: нормально замкнуто
реле 2			Т2А-Т2С: нормально разомкнуто
			Номинальная нагрузка: 250 В АС, 3 А 30В DC, 1 А
Разъем 485	485 +	485 положительный диф- ференциальный сигнал	Скорость передачи данных: 1200/2400/4800/9600/ 19 200/38 400/57 600/115 200 бит/с
	485-	485 отрицательный дифференциальный сигнал	

Таблица 3.6 – Таблица функций переключателей платы управления

Наименование	Функция	Параметры по умолчанию
485	Согласующий резистор (терминатор) с сопротивлением 100 Ом Включается, если преобразователь частоты является последним устройством в сети ОN — включен ОFF — выключен	OFF
Al1	Al1 выбор типа сигнала: V — сигнал по напряжению (0÷10 B) I — токовый сигнал (0/4÷20 мA)	V
AI2	Al2 выбор типа сигнала: V — сигнал по напряжению (0÷10B) I — токовый сигнал (0/4÷20мA)	V
AO1	AO1 выбор типа сигнала: V — сигнал по напряжению (0÷10 B) I — токовый сигнал (0÷20 мA)	V
A02	AO2 выбор типа сигнала: V — сигнал по напряжению (0÷10 B) I — токовый сигнал (0÷20 мА)	V
PE1	GND выбор заземления: ON — заземление через предохранительный конденсатор OFF — не подключено	OFF
PE2	COM выбор заземления: ON — заземление через предохранительный конденсатор OFF — не подключено	OFF

• Инструкции для аналоговых входов

Входы AI1 и AI2 могут принимать сигналы по напряжению и токовые. Типы сигналов могут быть переключены переключателями на плате управления AI1 и AI2. Способ подключения и конфигурация блока переключателей показаны на следующем рисунке.

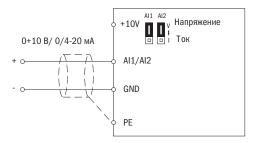


Рисунок 3.23 — Схема подключения аналогового входа

Клеммы A01 и A02 поддерживают напряжение выхода (0÷10 B) и выход тока (0÷20 мА). Они выбираются с помощью переключателя A01 и A02 на плате управления.

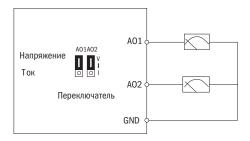
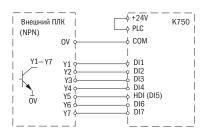
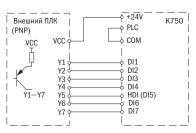
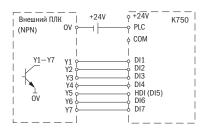
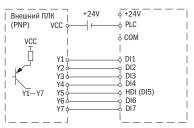




Рисунок 3.24 — Схема подключения аналогового выхода


• Подключение цифровых входов

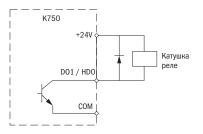

a) NPN-режим с питанием от источника 24 В ПЧ

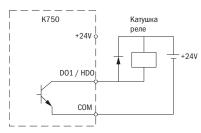
в) PNP-режим с питанием от источника 24 В ПЧ

б) NPN-режим с питанием от внешнего источника 24 В

г) PNP-режим с питанием от внешнего источника 24 B

Рисунок 3.25 — Схема подключения цифровых входов


ПРИМЕЧАНИЕ:


При использовании внешнего источника питания для цифровых входов, необходимо удалить перемычку между клеммами +24 В и PLC. В противном случае изделие будет повреждено!

При использование внешнего источника питания для импульсного входа HDI необходимо подключить «-» источника питания к клемме COM, иначе HDI-вход не будет работать!

• Подключение цифровых выходов

Многофункциональные выходные клеммы DO1 и HDO могут получать питание от внутреннего источника питания преобразователя +24 В или внешнего источника питания. Схема подключения следующая:

- а) NPN-режим с питанием от источника 24 В ПЧ
- в) PNP-режим с питанием от источника 24 В ПЧ

Рисунок 3.26 — Схема подключения цифровых выходов

ПРИМЕЧАНИЕ:

Цифровой выход — это транзисторный выход с открытым коллектором и максимальной нагрузкой 50 мА. При использовании внутреннего источника питания и подключении индуктивной нагрузки должна быть установлена снаберная (ЦФТП) цепь, такая как RC-цепь или обратный диод. При добавлении обратного диода в цепь проверьте полярность диода, иначе изделие будет повреждено. При использовании внешнего источника питания необходимо соединить «-» источника с клеммой СОМ-преобразователя.

Подключение интерфейса RS485

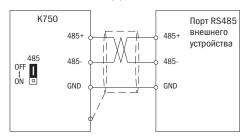


Рисунок 3.27 — Одиночное подключение преобразователя к внешнему устройству по RS485

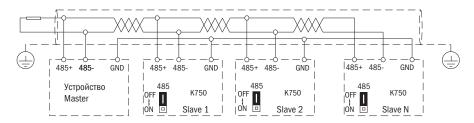


Рисунок 3.28 — Подключение нескольких преобразователей K750 в промышленую сеть с управлением от внешнего ПЛК

3.4 Электромагнитная совместимость (ЭМС)

Принцип работы преобразователя частоты подразумевает, что преобразователь будет источником помех для других устройств. С другой стороны, внутренние компоненты платы управления преобразователя частоты также подвержены помехам при работе в промышленных помещениях. Для уменьшения воздействия преобразователя на другие приборы:

- Установите на входе и выходе преобразователя частоты ЕМС-фильтр.
- Оболочки фильтра и электротехнического шкафа должны быть хорошо соединены для уменьшения сопротивления для токовой петли помех.
- Длина кабеля между преобразователем и двигателем должна быть как можно меньше. Кабель
 электродвигателя должен быть четырехжильным. Один конец провода заземления заземляется
 на стороне преобразователя, а другой конец подключен к корпусу двигателя. Кабель двигателя
 должен быть в металлической трубе или быть экранированным.
- Кабель питания преобразователя и кабель подключения электродвигателя должны быть проложены раздельно.
- Восприимчивое к помехам оборудование и сигнальные линии должны быть установлены вдалеке от преобразователя.
- Для сигнального кабеля кнопок нужно использовать экранированный кабель. Предполагается,
 что слой экранированного кабеля должен быть заземлен способом 360-градусного заземления
 и установлен в металлическую трубку. Сигнальные линии должны быть проложены отдельно
 от кабеля питания преобразователя частоты и от кабеля электродвигателя. Минимальное
 расстояние между сигнальными линиями и силовыми кабелями 30 см. Пересечение силовых
 кабелей и сигнальных линий должно быть под углом 90 градусов.
- Для сигнальных линий аналоговых входов рекомендуется использовать экранированный двужильный кабель с максимальной длиной 30 метров. Экран кабеля должен быть подключен к клемме РЕ платы управления преобразователя частоты.
- Провода, подключенные к клеммам Т1А / Т1В / Т1С, Т2А / Т2В / Т2С и другим клеммам преобразователя, должны быть проложены раздельно.
- Запрещается подключать экран кабеля к другим сигнальным линиям и закорачивать.
- При подключении устройств индуктивной нагрузки (магнитного контактора, реле, электромагнитного клапана и т. д.) к инвертору обязательно используйте ограничитель перенапряжения на катушке нагрузочного устройства.
- Правильное и надежное заземление это безопасная и надежная эксплуатация основания:
 - (1) Преобразователь будет генерировать ток утечки. Чем больше несущая частота, тем больше ток утечки. Если ток утечки инвертора больше 3,5 мА, то величина тока утечки зависит от условий использования. Чтобы обеспечить безопасность, инвертор и двигатель должны быть заземлены.
 - (2) Выбор сечения провода заземления должен быть сделан согласно региональным стандартам.
 - (3) Не используйте контур заземления, на котором работает сварочное оборудование.
 - (4) При использовании более двух преобразователей не образуйте петлю провода заземления.

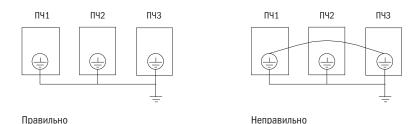


Рисунок 3.29 — Схема заземления преобразователей частоты

 При использовании длинного кабеля между преобразователем частоты и электродвигателем необходимо настроить несущую частоту выходного напряжения.

При длине неэкранированного кабеля электродвигателя больше 100 м необходимо установить выходной моторный дроссель для компенсации собственной емкости кабеля. Для экранированного кабеля дроссель устанавливается при длине более 50 м. В противном случае преобразователь будет останавливаться по перегрузке.

Таблица 3.7 – Таблица зависимости несущей частоты от длины кабеля электродвигателя

Длина кабеля между преобразователем и двигателем	Меньше 20 м	Меньше 50 м	Меньше 100 м	Меньше 100 м
Несущая частота (Р22.00)	До 15 кГц	До 8 кГц	До 4 кГц	До 2 кГц

Глава 4 Пульт управления

4.1 Описание LCD-пульта управления преобразователя

4.1.1 Описание LCD-пульта управления

LCD-пульт управления состоит из кнопок управления и ЖК-дисплея. ЖК-дисплей предназначен для отображения текущего состояния преобразователя частоты, отображения аварий и навигации по параметрам в режиме настройки параметров работы преобразователя.

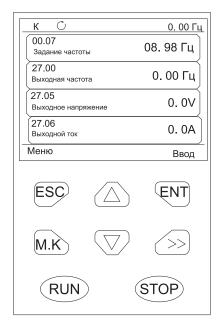


Рисунок 4.1 — Внешний вид LCD-пульта управления

Таблица 4.1 – Описание функций кнопок LCD-пульта управления

Кнопка	Наименование	Функция
ESC	Отмена	Используется для отзыва или отмены. Свойства в конкретных сценариях
ENT	Ввод	Используется для выбора или подтверждения
	Увеличение	Используется для перемещения курсора вверх или увеличения значения
\bigcirc	Уменьшение	Используется для перемещения курсора вниз или уменьшения значения
M.K	Многофункциональная кнопка	Эта кнопка объединяет множество функций. Переключение на соответ- ствующую функцию зависит от настроек параметров
>>	Сдвиг	Используется для перемещения курсора вправо или для входа в функцию быстрого поиска в интерфейсе списка параметров
RUN	Пуск	Запуск преобразователя частоты (двигателя)
STOP	СТОП/СБРОС	Во время работы нажмите для остановки работы (настраивается параметром 21.03)
		Для сброса ошибки нажмите на кнопку

4.1.2 Описание меню и навигации по меню

Рисунок 4.2 — Главный экран меню

Таблица 4.2 — Описание главного экрана меню

Номер	Наименование	Описание
1	Параметры	Используется для входа в режим настроек параметров
2	Настройки	Используется для настройки функции многофункциональной кнопки пароля пользователя, настройки языка и т. д.
3	Информация об устройстве	Используется для просмотра информации о версии программы преобразователя и версиях плат
4	Аварии	Используется для просмотра текущей ошибки или истории ошибок
5	Макрос	Редактирование и сохранение макросов, загрузка параметров в преобразователь

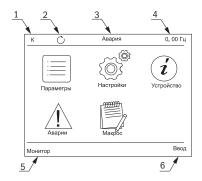


Рисунок 4.3 — Индикация на пульте управления

Таблица 4.3 – Описание индикации на пульте управления

Номер	Наименование	Описание
1	Источник управления	Отображает источник управления (клавиатура, входы/выходы или промышленная сеть)
2	Направление вращения	Указывает направление вращения двигателя По часовой стрелке — вперед Против часовой стрелки — реверс
3	Авария	Используется для отображения предупреждающей информации
4	Контроль параметра в реальном времени	Настраиваемый Показывает состояние контролируемого параметра
5	Монитор	Нажмите ESC для входа в интерфейс контроля текущего состояния
6	Ввод	Используется для выбора или подтверждения

4.1.3 Меню параметров

- 1. Войдите на главный экран.
- 2. Войдите в меню настройки параметров, выбрав иконку меню параметров, нажав кнопку $\overline{\text{ENT}}$.
- 3. С помощью кнопок , w выберите необходимый пункт меню (выбранный пункт группы параметров и параметр выделяются черным фоном) и нажмите ENT для входа в список параметров группы.

Рисунок 4.4 — Интерфейс списка групп параметров

Таблица 4.4 – Описание интерфейса выбора группы параметров

Номер	Описание
1	Показывает номер группы параметров
2	Показывает название группы параметров
3	Быстрый поиск. Служит для ввода номера параметра для быстрого поиска

4. Для выбора параметра используйте кнопки \bigcirc и \bigcirc . Нажмите $\stackrel{\hbox{\footnotesize ENT}}{\longleftarrow}$.

Рисунок 4.5 — Интерфейс меню выбора параметра

Таблица 4.5 – Описание интерфейса выбора параметра

Номер	Описание	
1	Показывает номер параметра	
2	Показывает название параметра	
3	Показывает значение параметра. Если параметр имеет единицы, то единицы будут отображаться. В противном случае будет отображено только значение параметра	

5. Для настройки параметра необходимо использовать кнопки

6. Выбрав необходимое значение параметра, нажмите кнопку ENT для сохранения и вернитесь в меню выбора параметров.

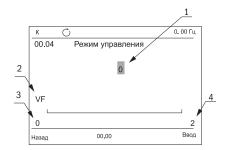


Рисунок 4.6 — Интерфейс меню настройки параметра

Таблица 4.6 – Описание интерфейса меню настройки параметров

Номер	Название	Описание
1	Значение	Вы можете редактировать значение между максимальным и минимальным
		с помощью кнопок Д, Д и
2	Описание значения	Установленный режим работы
3	Минимальное	Минимальное значение параметра
4	Максимальное	Максимальное значение параметра

Для быстрого поиска параметра в меню параметров необходимо нажать кнопку >>>, что откроет окно поиска параметра. В окне поиска введите номер параметра, который необходимо настроить, и нажмите ENT. Если номер параметра введен правильно, автоматически откроется окно настройки параметра.

4.1.4 Задание пароля пользователя

- 1. Войдите в меню настроек.
- 2. Выберите пункт «Пароль пользователя» и нажмите $\overline{\text{ENT}}$
- 3. Введите необходимый пароль (для перемещения по регистрам можно использовать кнопку >>, увеличить или уменьшить значение пароля можно кнопками \triangle и \bigcirc).
- 4. Для ввода пароля нажмите кнопку (ENT).

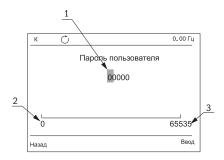


Рисунок 4.7 — Интерфейс ввода пароля пользователя

Таблица 4.7 – Описание интерфейса ввода пароля пользователя

Номер	Название	Описание
1	Значение	Вы можете редактировать значение между максимальным и минимальным с помощью кнопок ,
2	Минимальное	Минимальное значение параметра
3	Максимальное	Максимальное значение параметра. Максимум 65535

4.1.5 Меню аварий

- 1. На главном экране выберите иконку «Аварии» кнопками 🛆 , 💟 и 🗇
- 2. Нажмите кнопку ENT для входа в меню аварий.
- 3. Для просмотра текущей аварии выберите строку «Текущая авария» и нажмите (ENT)

Рисунок 4.8 — Меню аварий

В меню текущей аварии вы можете просмотреть информацию о причине остановки преобразователя частоты. В меню «Журнал аварий» можно посмотреть историю аварий преобразователя частоты.

Рисунок 4.9 — Меню текущей аварии

Таблица 4.8 – Описание интерфейса меню текущей аварии

Номер	Описание	
1	Показывает код аварии	
2	Показывает название аварии	

4.1.6 Макросы

Макросы используются для создания конфигураций параметров, которые часто используются пользователем. Всего в одном макросе могут быть запомнены 16 параметров, которые будут отличаться от заводских настроек.

- 1. На главном экране с помощью кнопок (Д), (Д) и (>>) выберите иконку «Макрос».
- 2. В меню макросов выберите «Макрос пользователя» и нажмите (ENT).
- 3. В меню «Макросы пользователя» выберите необходимый для редактирования макрос и нажмите $\overline{(ENT)}$.

К О.00 Гц
Макросы пользователя

Настройка макроса 1
Настройка макроса 2
Настройка макроса 3
Загрузка макроса 1
Загрузка макроса 2
Загрузка макроса 2
Загрузка макроса 3
Назад Ввод

Рисунок 4.10 — Меню выбора макроса

Таблица 4.9 – Описание интерфейса меню макросов

Номер	Описание	
1	Используется для входа в меню редактирования макросов	
2	2 Используется для загрузки макроса в преобразователь	

В меню настройки макроса можно задать параметры и их значения, которые будут запомнены в LCD-пульте управления, и при необходимости пользователь может загрузить в преобразователь один из трех наборов (макросов).

4. Для редактирования параметра макроса выберите параметр и нажмите ENT

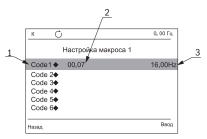


Рисунок 4.11 — Меню настройки макросов

Таблица 4.10 - Описание интерфейса меню макросов

Номер	Описание	
1	тображает порядковый номер параметра в макросе	
2	Номер параметра	
3	Запомненное значение параметра. Если параметр имеет единицы измерения, они будут отображены	

5. В меню редактирования параметра макроса с помощью кнопки >> происходит перемещение по регистрам номера параметра и его значению. Для подтверждения и записи параметра и его значения в макрос необходимо подтвердить ввод кнопкой ENT.

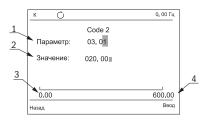


Рисунок 4.12 — Меню редактирования параметра макроса

Таблица 4.11 – Описание интерфейса меню редактирования параметра макроса

Номер	Описание	
1	Отображает номер параметра, который будет запомнен в макросе	
2	Значение параметра, выбранное пользователем	
3	Минимальное значение параметра	
4	Максимальное значение параметра	

Для удаления параметра из макроса необходимо выбрать параметр кнопками (/ и, нажав кнопку (>>), войти в меню удаления параметра.

\triangle , ∇

4.1.7 Копирование и загрузка параметров в LCD-пульт

LCD-пульт управления позволяет считывать параметры преобразователя частоты, которые отличаются от заводских, и хранить их в памяти пульта управления. Также можно произвести загрузку параметров из памяти пульта в память ПЧ.

- Копирование параметров
- 1. Для копирования параметров войдите в меню «Макрос».
- 2. Войдите в меню «Копирование и загрузка параметров».

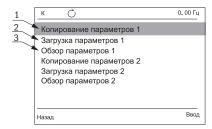


Рисунок 4.13 — Меню копирования и загрузки параметров

Таблица 4.12 – Описание интерфейса меню редактирования параметра макроса

Номер	Описание	
1	Копирование параметров, которые отличаются от заводских, в память пульта управления	
2	Загрузка параметров из памяти пульта в преобразователь частоты	
3	Обзор сохраненных параметров	

3. Выберите необходимую ячейку «Копирование параметров» для записи параметров, отличающихся от заводских, в память пульта и нажмите ENT.

При успешном копировании на экране появится сообщение «Успешно». При проблемах записи появится сообщение «Отказ».

- Загрузка параметров
- 1. Для копирования параметров войдите в меню «Макрос».
- 2. Войдите в меню «Копирование и загрузка параметров».
- При успешном копировании на экране появится сообщение «Успешно». При проблемах записи появится сообщение «Отказ».

• Обзор параметров

В меню обзора параметров можно посмотреть скопированные/запомненные параметры и их значения. Также в меню просмотра можно удалить параметры из ячейки сохранения, нажав кнопку (>>>).

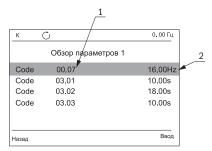


Рисунок 4.14 — Меню обзора параметров

Таблица 4.13 — Описание интерфейса меню обзора параметров

Номер	Описание	
1	Номер скопированного параметра	
2	Значение параметра	

4.1.8 Монитор текущего состояния

В меню мониторинга состояния можно увидеть текущее состояние контролируемых параметров.

Всего в мониторе состояния отображаются 4 параметра, которые можно настроить. Монитор состояния появляется сразу при включении преобразователя и загрузке программного обеспечения.

Рисунок 4.15 — Монитор текущего состояния

Таблица 4.14 – Описание интерфейса монитора текущего состояния

Номер	Описание	
1	Номер контролируемого параметра	
2	Название параметра	
3	Текущее значение параметра	

1. В интерфейсе монитора состояния нажмите $\stackrel{\longleftarrow}{\text{ENT}}$, чтобы появился курсор, и перемещайте его кнопками $\stackrel{\frown}{\triangle}$ и $\stackrel{\longleftarrow}{\nabla}$.

Рисунок 4.16 — Выбор параметра монитора состояния

2. Выбрав необходимый параметр, нажмите ENT для входа в меню редактирования отображаемого параметра.

_к О	0. 00 Гц
00.07 Задание частоты	08. 98 Гц
27.00 Выходная частота	0. 00 Гц
27.05 Выходное напряжение	0. 0V
27.06 Выходной ток	0. 0A
Меню	Ввод

Рисунок 4.17 — Меню редактирования монитора состояния

- 3. Для выбора номера параметра нажмите >> для выбора регистра номера и установите необходимый номер с помощью кнопок \bigcirc и \bigcirc .
- 4. Для подтверждения выбора нажмите ENT.

4.1.9 LCD-пульт RCP-K750-LCD (опция)

Рисунок 4.18 — Внешний вид LCD-пульта управления RCP-K750-LCD

Данный LCD-пульт управления имеет ряд преимуществ:

- встроенная батарея, что позволяет задать реальное время;
- разъём USB Micro-B, что позволяет записывать макросы и версии ПО для преобразователя частоты напрямую с персонального компьютера;
- полнотекстовый русифицированный цветной дисплей для удобства настройки и визуализации показаний.

Информация об устройстве

Выберите значок «Устройство» в меню и нажмите кнопку «ENT» для входа в интерфейс «Устройство», как показано на рисунке 4.1.19.

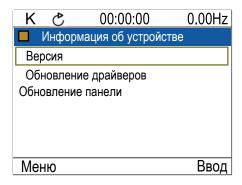


Рисунок 4.19 — Интерфейс «Устройство»

Информация о версии

Для входа в интерфейс «Версия», нажмите кнопку «ENT» как показано на рисунке 4.20.

K	O	00:00:00	0.00Hz
■ B	ерсия		
Верс	сия ПС	LCD	V1.06
Верси	я сило	овой платы	3.20
Веро	сия прі	имечания	3.20
Спел	циальн	ая версия	0.00
SN-1		100	
SN-2			100
Наз	Назад		

Рисунок 4.20 — Интерфейс «Версия»

Обновления драйверов

Для входа в интерфейс «Обновление драйверов», нажмите кнопку «ENT» как показано на рисунке 4.21.

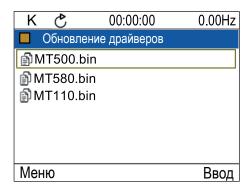


Рисунок 4.21 — Интерфейс «Обновление драйверов»

Выберите необходимый bin-файл, нажмите подтверждение «ENT», и вы войдёте в интерфейс выбора ключа как показано на рисунке 4.22.

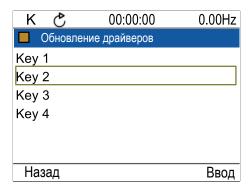


Рисунок 4.22 — Интерфейс выбора ключа

На этом этапе выберите необходимы ключ и нажмите кнопку «ENT» для обновления драйверов.

Обновление панели

Для обновления панели нажмите кнопку «ENT» и войдите в интерфейс обновления панели, как показано на рисунке 4.23.

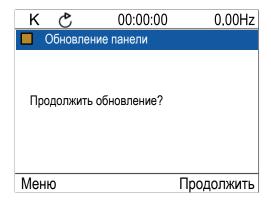


Рисунок 4.23 — Интерфейс обновления панели

Добавление файлов

- 1. Подключите LCD-панель к компьютеру при помощи USB-кабеля для передачи данных.
- 2. Нажмите кнопку «ENT», чтобы перевести панель в режим USB-накопителя (см. рисунок 4.24).

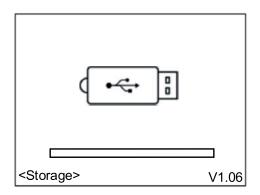


Рисунок 4.24 — Режим USB-накопителя

3. Откройте U-диск на компьютере и отобразите каталог файлов как показано на рисунке 4.25.

Macro	2023/1/1 0:00
1 → Prg	2023/1/1 0:00
2 → Update	2023/1/1 0:00
Word	2023/1/1 0:00

Рисунок 4.25 — Каталог файлов

Номер	р Название Функция		
1	1 Prg Сохранение файлов обновления драйверов		
2	Update	Сохранение файлов обновления панели	

4. Поместите необходимый файл обновления драйверов в папку Prg (файл обновления должен содержать расширение bin и не должен содержать кириллицу в названии). Поместите необходимый файл обновления панели в папку Update. Имя файла обновления панели должно быть по умолчанию, такое как на рисунке 4.26.

C936.Listbin
GB2312.DotF
Panel.PrgDat
Pic.PicDat
word 1. Word Dat
word 2. Word Dat
word 3. Word Dat
word4.WordDat
word5.WordDat

Рисунок 4.26 — Каталог файлов

Глава 5 Таблица параметров

Таблица 5.1 — Группы параметров

Классификация	Группа параметров
Общие параметры	00: Основные функции
	01: Выбор источника частоты
	02: Запуск и останов
	03: Ускорение и замедление
	04: Аналоговые и импульсные входы (AI)
	05: Аналоговые и импульсные выходы (АО)
	06: Цифровые входы (DI)
	07: Многофункциональный цифровой выход (DO)
	08: Настройка цифровых выходов
Управление двигателем	10: Настройки энкодера
	11: Параметры двигателя 1
	12: Параметры скалярного управления (U/f) двигателя 1
	13: Параметры векторного управления двигателя 1
	14: Управление моментом
	16: Управление энергосбережением
Дисплей и защита	20: Пользовательские параметры
	21: Кнопочная панель и дисплей
	22: Конфигурация привода переменного тока
	23: Настройка защитных функций преобразователя
	24: Параметры защиты двигателя
	25: Параметр отслеживания ошибок
	26: Текущая ошибка
	27: Журнал ошибок
Канал связи	30: Параметры Modbus
	31: Параметры САПореп
	32: Параметры ProfiNet
Применение	40: ПИД-регулятор
	41: Режим сна
	42: Простой ПЛК
	43: Модули задержек
	44: Компаратор и логическое устройство / контроллер
	45: Многофункциональные счетчики
	58: Пожарный режим
Двигатель 2	60: Основные параметры двигателя 2
	61: Параметры двигателя 2
	62: Параметры скалярного управления (U/f) двигателя 2
	63: Параметры векторного управления двигателя 2

Описание к таблицам параметров:

Параметр также называется кодом функции, панель управления также называется клавиатурой. В данном руководстве в разных местах могут использоваться разные термины, но все они означают одно и то же.

Описание символа:

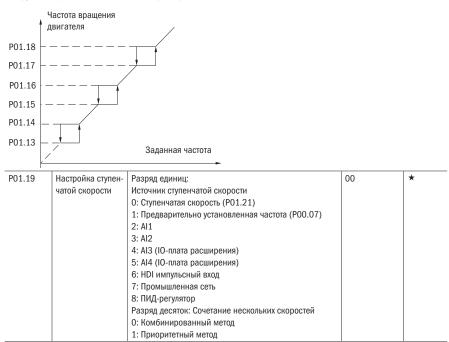
- ☆ означает, что значение настройки этого параметра может быть изменено, когда инвертор остановлен или работает.
- \star означает, что значение настройки этого параметра не может быть изменено во время работы инвертора.
- указывает, что значение этого параметра является фактическим значением, которое не может быть изменено

Таблица 5.2 — Источник частоты

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 00:	Основные функции			
P00.00	Пароль пользо- вателя	0+65535 • Нет пароля (Р00.01 = 1 после включения питания): Для установки пароля дважды введите значение • Состояние блокировки Введите пароль для разблокировки • Разблокированное состояние Введите пароль для блокировки инвертора. Введите одно и то же значение дважды в строке, чтобы сменить пароль (пароль будет удален, если вы введете 0 дважды подряд)	0	☆
P00.01	Полномочия доступа	О: Конечный пользователь В состоянии блокировки некоторые параметры не будут доступны для просмотра, пока не будет введен пароль 1: Общий доступ Все параметры доступны	-	•
P00.02	Копирование и сохранение резервной копии параметров	О: Без действий 11: Сохранение всех параметров в резервной копии EEPROM 12: Восстановление всех параметров из резервной копии EEPROM	0	*
P00.03	Сброс на заводские параметры	0: Без действий 11: Восстановление параметра по умолчанию, за исключением параметров двигателя, и параметров, относящихся к автонастройке, и заводских параметров 12: Восстановление параметров по умолчанию до заводских параметров 13: Очистить журнал ошибок	0	*

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P00.04	Режим управ- ления электродви- гателем	О: VF (напряжение /частота) 1: SVC (векторное управление без обратной связи) Векторное управление без использования энкодера 2: VC (векторное управление с обратной связью) • Векторное управление с обратной связью от энкодера. Для данного типа управления двигателем необходима дополнительная плата энкодера (опция). Необходимо произвести настройки энко- дера в группе параметров Р10	0	*
P00.05	Режим работы	О: Управление скоростью 1: Управление моментом • При использовании с функцией DI 19 «Переключение между управлением крутящим моментом и скоростью» и функцией 20 «Отключение управления крутящим моментом». Фактически эффективный режим работы связан с состоянием DI	0	*
P00.06	Источник команды «Пуск»	О: Пульт управления 1: Цифровой вход (DI) 2: Промышленная сеть • Источник сигнала: пуск \ останов \ вперед \ в обратную сторону \ медленная подача \ быстрая остановка с плавным торможением и т. д. • Если используется с функцией DI 12 «Переключение команды запуска на клавиатуру» и 13 «Переключение команды запуска на канал связи», источник команды зависит от состояния DI	0	*
P00.07	Цифровое задание частоты	00,00 Гц ÷ максимальная частота	50,00 Гц	☆
P00.08	Направление вращения	О: Вперед 1: Реверс • Работает только при управлении с пульта управления. Если сигнал от клавиатуры / клеммы / канала связи не может изменить направление, необходимо изменить Р22.13 в режиме остановки	0	र्द्ध
P00.09	Реверс	0: Разрешен 1: Запрещен	0	*
P00.10	Выбор электро- двигателя	О: Двигатель 1 1: Двигатель 2 Если для переключениея параметров двигателя используется DI с функцией 16 «Переключение между двигателем 1 и двигателем 2», то выбор двигателя зависит от состояния DI	0	*
P00.11	Исполнение	0: Стандартный привод 1: Резерв	0	*
r00.18	Версия ПО силовой платы	_	-	•
r00.19	Версия ПО платы управления	_	_	•
r00.21	SN 1	_	-	•
r00.22	SN 2	_	_	•

Таблица 5.3 — Источник частоты


Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 01:	Выбор источника час	стоты		1
P01.00	Выбор основного источника частоты (А)	О: Цифровая настройка 1: Al1 2: Al2 3: Al3 (ІО-плата расширения) 4: Al4 (ІО-плата расширения) 5: HDI 6: Многоступенчатая скорость 7: Промышленная сеть 8: ПИД-регулятор 9: Внутренний ПЛК Примечание: код функции входа DI 26-32 имеет больший приоритет	0	*
P01.01	Выбор дополни- тельного источ- ника частоты (В)	Совпадает с РО1.00 Примечание: код функции клеммы DI 33 имеет больший приоритет	0	*
P01.02	Отношение дополнительного источника частоты	О: Относительно максимальной частоты 1: Относительно основной частоты	0	*
P01.03	Усиление дополнительной частоты	0,0÷300,0	100,0 %	\$
P01.04	Выбор источника частоты	О: Основной источник частоты А 1: Дополнительный источник частоты В 2: Основные и вспомогательные арифметические результаты 3: Переключение между основной (А) и вспомогательной частотой (В) 4: Переключение между основным источником и арифметическими результатами А + В 5: Переключение между В и (А + В) (*) Функциональный код DI 25 эффективен для соответствующей клеммы, частота будет адаптироваться к последней	0	*
P01.05	Арифметиче- ские действия с основным и дополнительным источником частоты	О: А + В 1: А-В 2: Наибольшее значение между основной А и вспомогательной В 3: Наименьшее значение между основной А и вспомогательной В 4: А × В А × В имеют лучшую регулировку частоты, широко используются для производства обмотки, мелкозернистых машин, в кожевенной и бумажной промышленности	0	*
P01.06	Максимальная частота	10,00÷600,00 Гц	50,00 Гц	*

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P01.07	Управление верхним пре- делом частоты	0: цифровая настройка (установка через P01.08) 1: Al1 2: Al2 3: Резерв 4: Резерв 5: HDI импульсный вход 6: Резерв 7: Промышленная сеть	0	*
P01.08	Верхний предел частоты	Нижний предел частоты (Р01.09) ÷ максимальная частота (Р01.06)	50,00 Гц	☆
P01.09	Нижний предел частоты	0,00 Гц ÷ верхний предел частоты	0,00 Гц	⋨
P01.10	Действие при работе на нижнем пределе частоты	О: Работа на нижнем пределе частоты 1: Останов после задержки времени РО1.11 2: Работа на нулевой скорости Двигатель будет остановлен выбегом, если задание частоты будет ниже, чем нижний предел частоты после задержки РО1.11. Если задание частоты будет превышать нижний предел частоты в течение времени, установленного в РО1.11, инвертор вернется в рабочее состояние автоматически	0	*
P01.11	Время задержки, когда задание частоты ниже нижнего предела частоты	О,000÷30,000 с Этот код функции определяет время задержки спящего режима. Когда рабочая частота инвертора ниже, чем нижний предел частоты, инвертор переходит в режим ожидания Когда заданная частота снова превышает нижний предел частоты в течение времени, установленного параметром Р01.11, инвертор запустится автоматически Выходная частота t1 < t2, преобразователь не работает t1 + t2 = t3, преобразователь работает t3 = P01.20 Время Работа Спящий режим Работа	0,000 c	*
P01.12	Перескок частот (запрещенные частоты)	Доступны три частоты для перескока (для запрета) единицы/десятки/сотни: три частоты скачка 1/2/3 0: Отключено 1: Включено (избежать опасной скорости)	000	À
P01.13	Частота скачка 1, нижний предел	0,00 Γμ ÷ (P01.14)	0,00 Гц	☆
P01.14	Частота скачка, верхний предел	P01.13 ÷ (P01.06) Максимальная частота	0,00 Гц	☆

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P01.15	Частота скачка 2, нижний предел	0,00 Γц ÷ (P01.16)	0,00 Гц	☆
P01.16	Частота скачка 2, верхний предел	Р01.15 ÷ Максимальная частота (Р01.06)	0,00 Гц	☆
P01.17	Частота скачка 3, нижний предел	0,00 Γц ÷ (P01.18)	0,00 Гц	☆
P01.18	Частота скачка 3, верхний предел	Р01.17 ÷ Максимальная частота (Р01.06)	0,00 Гц	☆

Для избежания работы двигателя на опасных частотах вращения (например, на частотах механического резонанса оборудования) необходимо включить параметр P01.12.

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			

Описание комбинированного метода

Вход 4	Вход 3	Вход 2	Вход 1	Комбинированный метод
Функция 24 DIn	Функция 23 Dlz	Функция 22 Dly	Функция 21 Dlx	источника ступенчатой скорости
Выкл	Выкл	Выкл	Выкл	Ступенчатая скорость 0
Выкл	Выкл	Выкл	Вкл	Ступенчатая скорость 1
Выкл	Выкл	Вкл	Выкл	Ступенчатая скорость 2
Выкл	Выкл	Вкл	Вкл	Ступенчатая скорость 3
Выкл	Вкл	Выкл	Выкл	Ступенчатая скорость 4
Выкл	Вкл	Выкл	Вкл	Ступенчатая скорость 5
Выкл	Вкл	Вкл	Выкл	Ступенчатая скорость 6
Выкл	Вкл	Вкл	Вкл	Ступенчатая скорость 7
Вкл	Выкл	Выкл	Выкл	Ступенчатая скорость 8
Вкл	Выкл	Выкл	Вкл	Ступенчатая скорость 9
Вкл	Выкл	Вкл	Выкл	Ступенчатая скорость 10
Вкл	Выкл	Вкл	Вкл	Ступенчатая скорость 11
Вкл	Вкл	Выкл	Выкл	Ступенчатая скорость 12
Вкл	Вкл	Выкл	Вкл	Ступенчатая скорость 13
Вкл	Вкл	Вкл	Выкл	Ступенчатая скорость 14
Вкл	Вкл	Вкл	Вкл	Ступенчатая скорость 15

Описание приоритетного метода

Вход 4	Вход 3	Вход 2	Вход 1	Приоритетный метод источник
				опорного сигнала скорости
Выкл	Выкл	Выкл	Выкл	Ступенчатая скорость 0
Выкл	Выкл	Выкл	Вкл	Ступенчатая скорость 1
Выкл	Выкл	Вкл	Произвольный	Ступенчатая скорость 2
Выкл	Вкл	Произвольный	Произвольный	Ступенчатая скорость 3
Вкл	Произвольный	Произвольный	Произвольный	Ступенчатая скорость 4

Направление вращения ступен-	Биты 0÷15 соответствуют 0÷15 направлению ступен- чатых скоростей	0	☆
чатой скорости	0: Вперед		
	1: Реверс		
Многоступенчатая	Нижний предел частоты (Р01.09) ÷ максимальная	0,00 Гц	☆
1 ' '	, ,		
1 '			
ПЛК 1	на ненулевое значение, эта настройка недействительна		
Ступенчатая	Нижний предел частоты (P01.09) ÷ максимальная	0,00 Гц	☆
скорость 1/	частота (Р01.06)		
встроенный	,		
ПЛК 2			
Ступенчатая	Нижний предел частоты (РО1.09) ÷ максимальная	0,00 Гц	☆
скорость 2/	частота (Р01.06)		
встроенный	, ,		
плк з			
	вращения ступенчатой скорости Многоступенчатая скорость 0/ встроенный ПЛК 1 Ступенчатая скорость 1/ встроенный ПЛК 2 Ступенчатая скорость 2/ встроенный	вращения ступенчатой скорости Многоступенчатая скорость 0/ встроенный плК 1 Ступенчатая скорость 1/ встроенный плК 2 Ступенчатая скорость 2/ встроенный на ненулевое значение, эта настройжа недействительна плК 2 Ступенчатая скорость 2/ встроенный плК 2 Вращения скорость 2/ встроенный предел частоты (Р01.09) ÷ максимальная частота (Р01.06)	вращения ступенчатая скорости Многоступенчатая скорость 0/ встроенный плк 2 Ступенчатая скорость 1/ встроенный плк 2 Ступенчатая скорость 1/ встроенный плк 2 Ступенчатая скорость 2/ встроенный на ненулевое значение, эта настройка недействительна плк 2 Ступенчатая скорость 1/ частота (Р01.06) Вотроенный плк 2 Ступенчатая скорость 2/ встроенный на ненулевое значение (Р01.09) ÷ максимальная скорость 2/ встроенный на ненулевое значение (Р01.09) ÷ максимальная одопоть од

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P01.24	Ступенчатая скорость 3/ встроенный ПЛК 4	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	र्दे
P01.25	Ступенчатая скорость 4/ встроенный ПЛК 5	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	☆
P01.26	Ступенчатая скорость 5/ встроенный ПЛК 6	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	☆
P01.27	Ступенчатая скорость 6/ встроенный ПЛК 7	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	☆
P01.28	Ступенчатая скорость 7/ встроенный ПЛК 8	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	À
P01.29	Ступенчатая скорость 8/ встроенный ПЛК 9	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	र्ज
P01.30	Ступенчатая скорость 9/ встроенный ПЛК 10	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	☆
P01.31	Ступенчатая скорость 10/ встроенный ПЛК 11	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	☆
P01.32	Ступенчатая скорость 11/ встроенный ПЛК 12	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	☆
P01.33	Ступенчатая скорость 12/ встроенный ПЛК 13	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	À
P01.34	Ступенчатая скорость 13/ встроенный ПЛК 14	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	क्रे
P01.35	Ступенчатая скорость 14/ встроенный ПЛК 15	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	ब्रे

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P01.36	Ступенчатая скорость 15/ встроенный ПЛК 16	Нижний предел частоты (P01.09) ÷ максимальная частота (P01.06)	0,00 Гц	⋨
P01.37	Толчковая частота	0,00 Гц ÷ максимальная частота (Р01.06)	5,00 Гц	☆
P01.38	Толчковая частота при работе	0: Отключена 1: Включена	0	*
P01.39	Скорость изменения частоты при сигналах «Больше»/ «Меньше»	0,00 (автоуровни) ÷ 600,00 Гц/с	1,00 Гц /с	\$
P01.40	Управление «Больше»/ «Меньше»	Разряд единиц: 0: Обнуление в нерабочем состоянии 1: Обнуление при сигнале «Больше»/ «Меньше» неэффективно 2: Без обнуления (сохранение частоты при выключении, сбое питания) Разряд десятков: 0: Без обнуления при сбое питания 1: Сохранение при сбое питания Смещение вверх/вниз Разряд сотен: работа на частоте около нуля 0: Запрещено 1: Включено Разряд тысяч: Режим действия «Больше»/ «Меньше» 0: Совмещение 1: Усиление	0000	*
P01.41	Коэффициент распределения нагрузки	0,00÷1,00 Значение падения скорости вращения в зависимости от номинальной нагрузки (относительно максимальной частоты) Объем падения частоты: максимальная частота х Р01.41 х токовая нагрузка/номинальная нагрузка	0,00	À
P01.42	Время филь- трации распреде- ления нагрузки по частоте	0,000÷10,000 c	0,050 с	ঽ

Когда несколько двигателей приводят в действие одну и ту же нагрузку, нагрузка каждого двигателя отличается из-за разницы номинальной скорости двигателя. Нагрузка на различные двигатели может быть сбалансирована с помощью функции распределения нагрузки по частоте, которая приводит к снижению скорости наряду с увеличением нагрузки.

Когда двигатель выдает номинальный крутящий момент, фактическое падение частоты равно P01.41. Пользователь может постепенно настраивать этот параметр от малого к большому во время ввода в эксплуатацию.

P01.43	Настройка тек-	0: Относительно центра частоты текстиля	0	☆
	стильной частоты	1: Относительно максимальной частоты		
	(частота качания)			

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P01.44	Частота текстиля	0,0÷100 % относительно центра частоты текстиля P01.43 = 0: Частота текстиля Aw = P01.44 \times центральная частота P01.43 = 1: Частота текстиля Aw = P01.44 \times max частота	0,0 %	☆
P01.45	Частота скачка	0,0÷50,0 % относительно частоты текстиля	0,0 %	☆
P01.46	Текстильный интервал времени	0,1÷3000,0 c	10,0 c	⋨
P01.47	Коэффициент времени выхода на рабочий режим треуголь- ного импульса	0,1÷100,0 % относительно текстильного интервала времени	50,0 %	☆

Эта функция в основном применяется в текстильной и химической промышленности, а также в некоторых областях, таких как горизонтальное наведение и намотна, поэтому она используется для балансировки распределения рабочей нагрузки, когда несколько двигателей задействуются для привода одной и той же нагрузки. Выходная частота преобразователей частоты уменьшается с увеличением нагрузки. Вы можете уменьшить рабочую нагрузку двигателя под нагрузкой, уменьшив выходную частоту для этого двигателя, осуществив балансировку рабочей нагрузки между несколькими двигателями. Р01.44 или Р01.46 = 0, эта функция отключена.

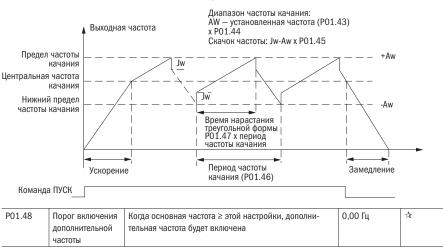


Таблица 5.4 – Запуск и останов

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 02:	Управление запуском	и и остановом		
P02.00	Режим запуска	О: Прямой запуск Инвертор запустится с P02.01, после P02.02 перейдет к настройке частоты в соответствии с кривой S 1: Поиск скорости Инвертор будет выполнять поиск скорости двигателя, распознавать, ускорять и замедлять до заданной частоты. См. параметры P02.16-P02.19 Направление и скорость будут отслеживаться автоматически для плавного пуска вращающихся двигателей. Подходит для применения с обратным вращением при запуске большой нагрузки	0	*
P02.01	Частота запуска	0,00÷10,00 Гц	0,00 Гц	*
P02.02	Время удержания частоты запуска	0,000÷10,000 с Установите правильную частоту запуска, чтобы увеличить крутящий момент инвертора во время запуска. В течение времени удержания начальной частоты выходная частота инвертора является пусковой частотой. Затем инвертор будет работать с пусковой частоты до заданной частоты. Если установленная частота ниже, чем пусковая частота, преобразователь прекратит работу и перейдет в режим ожидания. Пусковая частота не ограничена нижним пределом частоты	0,000 c	*
P02.04	Ток предвозбуж- дения	0÷200 % номинального тока двигателя	Зависимый	*
P02.05	Время предвоз- буждения	0,00÷10,00 с Включение предварительного возбуждения асинхронного двигателя магнитным полем для более высокого пускового момента	Зависимый	*
P02.06	Уровень тока при торможении постоянным током при запуске	0÷100 % номинального тока двигателя	100 %	*
P02.07	Время тормо- жения посто- янным током при запуске	0,000÷30,000 с При установке 0 с торможение постоянным током будет отключено	0,000 c	*

Торможение постоянным током используется для остановки и перезапуска работающего двигателя. Предварительное возбуждение используется для установления магнитного поля асинхронного двигателя, а затем запуска, улучшения скорости отклика. Торможение постоянным током действует только при непосредственном запуске, инвертор сначала выполняет торможение постоянным током в соответствии с PO2.06 и работает после PO2.07. Если время торможения постоянным током равно 0, инвертор запускается напрямую. Чем больше постоянный ток торможения, тем больше сила торможения.

Если режим запуска — это запуск до возбуждения, то инвертор сначала устанавливает магнитное поле в соответствии с установленным током предварительного возбуждения, запускается после установленного времени предварительного возбуждения. Если время предварительного возбуждения равно 0, инвертор запускается напрямую.

Ток торможения постоянным током до пуска / тока предварительного возбуждения соотносится с процентным содержанием номинального тока инвертора.

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P02.08	Метод останова	О: Замедление После получение команды «СТОП» инвертор начинает замедлять двигатель согласно установленному времени замедления до частоты О Гц 1: Выбег После получение команды «СТОП» инвертор мгновенно закрывает силовые ключи, и двигатель тормозится выбегом (по инерции)	0	☆
P02.09	Частота запуска торможения постоянным током при останове	0,00÷50,00 Гц Начать торможение постоянным током, когда рабочая частота достигает пусковой частоты, определенной P02.09	1,00 Гц	*
P02.10	Торможение постоянным током при останове	0÷200 % номинальный ток двигателя (максимальное значение не выше, чем номинальный ток привода) Значение Р02.10 — это процент от номинального тока инвертора. Чем больше ток торможения постоянным током, тем больше тормозной момент, равный времени торможения постоянным током. Время удержания торможения постоянным током. Если время равно 0, торможение постоянным током недопустимо. Инвертор остановится в установленное время замедления	100 %	文
P02.11	Время тормо- жения посто- янным током при останове	0,000÷30,000 с Инверторы блокируют выход перед началом тормо- жения постоянным током. По истечении этого времени ожидания будет начато торможение постоянным током, чтобы предотвратить перегрузку по току, вызванную торможением постоянным током на высокой скорости	0,000 c	*
P02.12	Усиление тормо- жения магнитным потоком	1,00+1,50 Торможение из-за чрезмерного возбуждения преобразует некоторую кинетическую энергию в нагрев двигателя путем увеличения возбуждения двигателя. Значение 1 означает отключение данной функции: значение выше, производительность выше, но выходной ток больше Инвертор может замедлить двигатель, увеличив магнитный поток. Энергия, генерируемая двигателем во время торможения, может быть преобразована в тепловую энергию за счет увеличения магнитного потока Инвертор непрерывно контролирует состояние двигателя даже в течение периода магнитного потока. Таким образом, магнитный поток может быть использован при остановке двигателя, а также для изменения скорости вращения двигателя. Другие его преимущества: • Тормозит сразу после команды останова. Не нужно ждать ослабления магнитного потока • Охлаждение лучше. Ток статора, отличного от ротора, увеличивается при торможении магнитным потоком, в то время как охлаждение статора более эффективно, чем ротора	1,00	*

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P02.13	Частота задержки при останове	0,00÷20,00 Гц	0,50 Гц	*
P02.14	Время задержки при останове	0,000÷60,000 с 0,000 с: Нет функции времени задержки при останове > 0,000 с: Это эффективно, когда выходная частота уменьшается ниже частоты задержки при останове (Р02.13), инвертор блокирует импульсный выход после времени задержки при останове (Р02.14). Ехсли во время задержки поступает команда запуска, инвертор перезапускается. Полезно для некоторых приложений с толчковой функцией	0,000 c	*
P02.15	Минимальное время блокировки после остановки выбегом	0,010÷30,000 c	Зависимая	*
P02.17	Время замед- ления для поиска скорости	0,1÷20,0 c	2,0 с	*
P02.18	Ток для поиска скорости	10÷150 % номинального тока двигателя	40 %	*
P02.19	Коэффициент компенсации поиска скорости	0,00÷10,00	1,00	*

Таблица 5.5 – Ускорение и замедление

Параметр	Наименование параметра	Описание	По умолчанию	Свойство		
Группа 03: Настройка кривой ускорения/замедления						
P03.00	Выбор кривой ускорения и замедления	0: Линейное ускорение/замедление 1: S-кривая A 2: S-кривая B	0	*		

Ускорение и замедление используется для плавного управления электродвигателем на фазах пуска и останова, что позволяет избежать больших пусковых токов при пуске, уменьшить механический износ деталей механизмов и продлить срок службы оборудования.

0: Линейное ускорение/замедление

Выходное напряжение и частота инвертора меняется линейно. Время ускорения относится ко времени от момента, когда инвертор ускоряется от нуля до опорной частоты (выбранной РОЗ.15); время замедления относится ко времени, необходимом для замедления от опорной частоты до нуля.

1: Способ S-кривой

Это кривая ускорения и замедления, ускорение «А» изменяется линейно, при запуске и останове относительно плоскости.

Кривая ускорения и замедления эквивалентного времени ускорения и замедления:

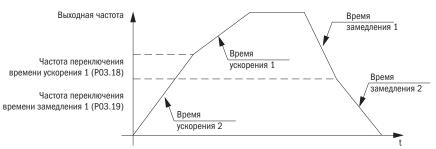
Время ускорения = Tacc + (Ts1 + Ts2) / 2

Время замедления = Tdec + (Ts3 + Ts4) / 2

2: Способ S-кривой В

Время этой S-кривой определяется как в методе A, за исключением того, что в процессе ускорения/замедления, если плановая частота внезапно приближается или время ускорения/замедления изменяется, S-кривая перепланируется. Кроме того, когда плановая частота изменяется, S-образные кривые максимально избегают чрезмерного превышения.

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P03.01	Время ускорения	Значение настройки зависит от P03.16 P03.16 = 2: 0,00÷600,00 c; P03.16 = 1: 0,0÷6 000,0 c; P03.16 = 0: 0÷60 000 c	Зависит от модели	क्रे
P03.02	Время замед- ления 1	Значение настройки зависит от P03.16 P03.16 = 2: 0,00÷600,00 c; P03.16 = 1: 0,0÷6 000,0 c; P03.16 = 0: 0÷60 000 c	Зависит от модели	☆
P03.03	Время ускорения 2	0,01÷60 000 с, совпадает с Р03.01	Зависит от модели	⋨
P03.04	Время замед- ления 2	0,01÷60 000 с, совпадает с Р03.02	Зависит от модели	⋨
P03.05	Время ускорения 3	0,01 ÷60 000 с, совпадает с РОЗ.01	Зависит от модели	⋨
P03.06	Время замед- ления 3	0,01÷60 000 с, совпадает с Р03.02	Зависит от модели	⋨
P03.07	Время ускорения 4	0,01÷60 000 с, совпадает с Р03.01	Зависит от модели	⋨
P03.08	Время замед- ления 4	0,01÷60 000 с, совпадает с Р03.02	Зависит от модели	☆



K750 обеспечивает 4 группы времени ускорения и замедления. Фактическое время ускорения и замедления может быть выбрано различными способами, такими как клемма DI, выходная частота и пусковые сегменты ПЛК. Некоторые способы не могут быть использованы одновременно. Заводские настройки по умолчанию должны использовать время ускорения/замедления.

5. DI клемма выбирает время ускорения и замедления таблицы соответствий, как указано ниже:

Время ускорения и замедления DI,	Время ускорения и замедления DI,	Время ускорения и замедления
клемма 2	клемма 1	
Выкл	Выкл	Время ускорения и замедления, клемма 1 (Р03.01, Р03.02)
Выкл	Вкл	Время ускорения и замедления, клемма 2 (РОЗ.ОЗ, РОЗ.О4)
Вкл	Выкл	Время ускорения и замедления, клемма 3 (РОЗ.05, РОЗ.06)
Вкл	Вкл	Время ускорения и замедления, клемма 4 (РОЗ.07, РОЗ.08)

Принципиальная схема времени ускорения/замедления в соответствии с выходной частотой. Как указано ниже:

Другие способы выбрать время ускорения/замедления можно найти в описании соответствующих параметров.

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P03.09	Толчковое время ускорения	Настройка времени совпадает с РОЗ.01	6,00 c	☆
P03.10	Толчковое время замедления	Настройка времени совпадает с РОЗ.02	10,00 c	☆
P03.11	S-кривая начала времени ускорения	Значение настройки зависит от РОЗ.16 РОЗ.16 = 2; 0,01÷30,00 с; РОЗ.16 = 1; 0,1÷300,0 с; РОЗ.16 = 0; 1÷3000 с	0,50 с	*
P03.12	S-кривая времени входа ускорения	Совпадает с РОЗ.11	0,50 с	☆
P03.13	S-кривая начала времени замед-ления	Совпадает с РОЗ.11	0,50 с	*
P03.14	S-кривая времени входа замедления	Совпадает с РОЗ.11	0,50 с	☆
P03.15	Критерий частоты времени ускорения и замедления	О: Максимальная частота 1: Номинальная частота двигателя	0	*

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P03.16	Выбор единицы измерения вре- мени ускорения и замедления	0: 1 c 1: 0,1 c 2: 0,01 c	2	*
P03.17	Время замед- ления быстрого останова	0,01÷65000 c	5,00 c	益
P03.18	Частота переклю- чения времени ускорения 1	0,00 Гц ÷ максимальная частота (Р01.06)	0,00 Гц	*
P03.19	Частота переключения времени замедления 1	0,00 Гц ÷ максимальная частота (Р01.06)	0,00 Гц	益
P03.20	Задержка изме- нения направ- ления вращения	0,00÷30,00 с, время задержки на нулевой скорости при изменении направления вращения	0,00 c	*

Таблица 5.6 — Аналоговые и импульсные входы

Параметр	Наименование параметра	Описание		По умолчанию	Свойство
Группа 04:	Аналоговые и импуль	сные входы			
P04.00	Минимальная частота импульс- ного входа	0,00÷50,00 кГц		1,00 кГц	☆
P04.01	Максимальная частота импуль- сного входа	0,00÷50,00 кГц	Соответствующее значение Р04.03	30,00 кГц	⋨
P04.02	Значение, соответствующее минимальной частоте импульсов	-100,0÷100,0 %	P04.02 P04.01 P04.01	0,0 %	☆
P04.03	Значение, соответствующее максимальной частоте импульсов	-100,0÷100,0 %	- Входная частота импульсов HDI	100,0 %	☆
P04.04	Время фильтрации импульсного входа	0,000÷10,000 c		0,050 с	⋨
r04.05	Частота импульс- ного входа	0,00÷50,00 кГц (пр	роверка частоты на входе HDI)	_	•
r04.06	Эквивалентное значение HDI	-100,0÷100,0 % (и соответствующего	используется для отображения значения HDI)	_	•

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P04.07	Настройка кривой Al1	Единицы: Выбор кривой AI 0: Кривая A 1: Кривая В 2: Кривая С 3: Кривая D Разряд десяток: Когда входной сигнал ниже, чем минимальный вход 0: Равна минимальному входу 1: Равна 0,0 %	00	*
P04.08	Время фильтрации AI1	0,000÷10,000 c	0,100 c	☆
r04.09	Фактическое значение AI1	0,00÷10,00 В. Используется для просмотра напряжения порта Al1. Когда Al1 является входом типа тока (0÷20 мA), умножение этого значения на 2 является входным током (мA) порта Al1	-	•
r04.10	Значение AI1	-100,0÷100,0 %. Используется для просмотра вывода значения кривой AI1	_	•
P04.11	Настройка кривой AI2	Единицы: Выбор кривой Al 0: Кривая A 1: Кривая В 2: Кривая С 3: Кривая С 3: Кривая D Разряд десяток: Когда входной сигнал ниже, чем минимальный вход 0: Равна минимальному входу 1: Равна 0,0 %	01	*
P04.12	Время фильтрации AI2	0,000÷10,000 c	0,100 c	☆
r04.13	Фактическое значение AI2	0,00÷10,00 В. Используется для просмотра напряжения порта Al2. Когда Al2 является входом типа тока (0÷20 мA), умножение этого значения на 2 является входным током (мA) порта Al2	_	•
r04.14	Значение AI 2	-100,0÷100,0 %. Используется для просмотра вывода значения кривой AI2	-	•
P04.15	Настройка кривой AI3 (дополни- тельная плата)	Единицы: Выбор кривой Al 0: Кривая A 1: Кривая В 2: Кривая С 3: Кривая D Разряд десяток: Когда входной сигнал ниже, чем минимальный вход 0: Равна минимальному входу 1: Равна 0,0 %	02	*
P04.16	Время фильтрации AI3 (дополни- тельная плата)	0,000÷10,000 c	0,100 c	⋨
r04.17	Фактическое значение AI3 (дополнительная плата)	0,00÷10,00 В. Используется для просмотра напряжения порта Al3. Когда Al3 является входом типа тока (0÷20 мA), умножение этого значения на 2 является входным током (мA) порта Al3	_	•

Параметр	Наименование параметра	Описание				По умолчанию	Свойство
r04.18	Значение AIЗ (дополнительная плата)	-100,0÷100.0 %. И значения кривой А	-	ся для просмо	отра вывода	_	•
P04.19	Настройка кривой AI 4 (дополни- тельная плата)	Единицы: Выбор к 0: Кривая А 1: Кривая В 2: Кривая С 3: Кривая D Разряд десяток: Ко минимальный вход 0: Равна минимали 1: Равна 0,0 %	огда входно 1		е, чем	03	*
P04.20	Время фильтрации AI4 (дополни- тельная плата)	0,000÷10,000 c				0,100 c	⋨
r04.21	Фактическое значение AI4 (дополнительная плата)	0,00÷10,00 В. Исп жения порта AI4. К (0÷20 мА), умноже входным током (мА	огда AI4 яг ение этого	вляется входо значения на 2	м типа тока	_	•
r04.22	Значение AI4 (дополнительная плата)	-100,0÷100,0 %. И значения кривой А	-	ся для просмо	отра вывода	_	•
P04.23	Кривая А, горизон- тальная ось 1	0,00 B÷P04.25	Значение	1		0,00 B	☆
P04.24	Кривая А, верти- кальная ось1	-100,0÷100,0 %	P04.26			0,0 %	☆
P04.25	Кривая А, горизонтальная ось 2	P04.23÷10,00 B				10,00 B	☆
P04.26	Кривая А, верти- кальная ось 2	-100,0÷100,0 %	Примеча Р04.23, г	4.23 ние: вход мен выход определ	іяется по	100,0 %	क्रे
P04.27	Кривая В, горизон- тальная ось 1	0,00 B÷P04.29	Значение	азряда десято	DK	0,00 B	⋾
P04.28	Кривая В, верти- кальная ось 1	-00,0÷100,0 %	P04.30			0,0 %	☆
P04.29	Кривая В, горизон- тальная ось 2	P04.27÷10,00 B				10,00 B	*
P04.30	Кривая В, верти- кальная ось 2	-100,0÷100,0 %	P04.28_ P0)4.27	P04.29 Al	100,0 %	⋨
			4-20 мА, 2,00 В Примеча P04.27, в	котите использ установите 04 ние: вход мен выход определ азряда десято	4.27 = ьше, чем пяется по		

Параметр	Наименование параметра	Описание		По умолчанию	Свойство
P04.31	Кривая С, горизонтальная ось 1	0,00 B÷P04.33	Значение A Р04.38 — — — — — — —	0,00 B	☆
P04.32	Кривая С, верти- кальная ось 1	-100,0÷100,0 %		0,0 %	☆
P04.33	Кривая С, горизон- тальная ось 2	P04.31÷P04.35	P04.36 — — —	3,00 B	☆
P04.34	Кривая С, верти- кальная ось 2	-100,0÷100,0 %	P04.32 AI	30,0 %	☆
P04.35	Кривая С, горизонтальная ось 3	P04.33÷P04.37	P04.31 P04.33 P04.35 P04.37	6,00 B	☆
P04.36	Кривая С, верти- кальная ось 3	-100,0÷100,0 %	Примечание: вход меньше, чем РО4.31, выход определяется по кривой разряда десяток	60,0 %	☆
P04.37	Кривая С, горизонтальная ось 4	P04.35÷10,00 B	кривои разряда десяток	10,00 B	☆
P04.38	Кривая С, верти- кальная ось 4	-100,0÷100,0 %		100,0 %	☆
P04.39	Кривая D, гори- зонтальная ось 1	0,00 B÷P04.41	Значение 4 РО4.46 — — — — — — —	0,00 B	☆
P04.40	Кривая D, верти- кальная ось 1	-100,0÷100,0 %] /i	0,0 %	☆
P04.41	Кривая D, гори- зонтальная ось 2	P04.39÷P04.43	P04.44 — — —	3,00 B	☆
P04.42	Кривая D, верти- кальная ось 2	-100,0÷100,0 %	P04.40 AI	30,0 %	☆
P04.43	Кривая D, гори- зонтальная ось 3	P04.41÷P04.45	P04.39 P04.41 P04.43 P04.45	6,00 B	☆
P04.44	Кривая D, верти- кальная ось 3	-100,0÷100,0 %	Примечание: вход меньше, чем РО4.39, выход определяется по кривой разряда десяток	60,0 %	☆
P04.45	Кривая D, гори- зонтальная ось 4	P 04.43÷10,00	привои разряда десяток	10,00 B	☆
P04.46	Кривая D, верти- кальная ось 4	-100,0÷100,0 %		100,0 %	☆

Описание: диапазон HDI, кривая отображения AI1 ÷ AI4:

- Для настройки частоты, 100 % соответствует максимальной частоте Р01.06.
- Для настройки крутящего момента, 100 % соответствует максимальному крутящему моменту Р14.02.
- Для других целей см. описание соответствующей функции.

Таблица 5.7 – Аналоговые и импульсные выходы

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 05:	Аналоговые и импуль	сные выходы		
r05.00	Частота импульсов (монитор)	0,00÷50,00 кГц	_	•
P05.01	Тип импульсного выхода HDO	0: Цифровой выход (D02 P07.02) 1: Высокочастотный импульсный выход (HD0)	0	☆
P05.02	Функция HDO	О: Выходная частота (0 ÷ максимальная частота) 1: Заданная частота (0 ÷ максимальная частота) 2: Выходной ток (0 ÷ 2-кратный номинальный ток двигателя) 3: Выходной крутящий момент (0 ÷ 3-кратный номинальный крутящий момент двигателя) 4: Заданный крутящий момент (0 + 3-кратный номинальный крутящий момент (0 + 3-кратный номинальный крутящий момент (0 + 2-кратное номинальное напряжение двигателя) 5: Выходное напряжение (0 + 2-кратное номинальное напряжение шины постоянного тока (0 + 2-кратное напряжение шины постоянного тока преобразователя) 7: Выходная мощность (0 + 2-кратная номинальная мощность двигателя) 8: Скорость вращения энкодера (0 — максимальная частота импульсов) 9: АІТ (0,00 + 10,00 В) 10: АІЗ (0,00 + 10,00 В) 11: АІЗ (0,00 + 10,00 В) 12: АІЧ (0,00 + 10,00 В)	0	☆
P05.03	Минимальная частота импульс- ного выхода HDO	0,00÷50,00 кГц Импульсная частота на выходе клеммы HDO, когда выходной сигнал = 0	1,00 кГц	☆
P05.04	Максимальная частота импульс- ного выхода HDO	0,00÷50,00 кГц Импульсная частота на выходе клеммы HDO, когда выходной сигнал = максимальному значению	30,00 кГц	₽
r05.05	Значение AO1 (монитор)	0,0÷100,0 %	-	•
P05.06	Функция АО1	Совпадает с описанием функции РО5.02	0	☆
P05.07	Смещение АО1	-100,0÷100,0 %	0,0 %	☆
P05.08	Усиление выхода AO1	-10,00÷10,00	1,00	⋨

Ошибка выхода A01 может быть исправлена с помощью P05.07 и P05.08, или отношение преобразования данных между источником сигнала и фактическим выходом может быть изменено. Формула:

AO.c = P05.07 + P05.08 × AO.pAO.c: фактический выход AO1;

AO.p: AO1 значение до исправления и AO.c, AO.p, 100,0 % от PO5.07 соответствует 10 В или 20 мА.

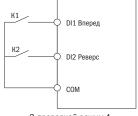
r05.09	Значение AO2 (монитор)	0,0÷100,0 %	_	•
P05.10	Функция АО2	Совпадает с описанием функции РО5.02	0	☆
P05.11	Выходное смещение AO2	-100,0÷100,0 %	0,0 %	☆
P05.12	Усиление АО2	-10,00÷10,00	1,00	☆

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			

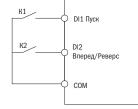
Ошибка выхода АО2 может быть исправлена Р05.11 и Р05.12, или отношение преобразования данных между источником сигнала и фактическим выходом может быть изменено. Формула:

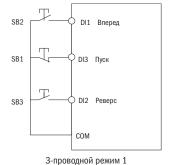
AO.c = P05.11 + P05.12 × AO.pAO.c: фактический выход AO2;

AO.p: AO2 значение до исправления и AO.c, AO.p, 100,0 % of PO5.11 соответствует 10 В или 20 мА.


Таблица 5.8 – Цифровые входы

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 06:	Многофункциональны	і й цифровой вход		-
r06.00	Статус выходов DI (монитор)	Бит0÷Бит8 соответствуют DI1÷DI8 Бит12÷Бит15 соответствуют VDI1÷VDI4	_	•
P06.01	Функция входа DI1	0: Нет функций	1	*
P06.02	Функция входа DI2	1: Вперед	2	*
P06.03	Функция входа DI3	2: Реверс / Переключение вперед и реверс	4	*
P06.04	Функция входа DI4	3: Трехпроводное управление 4: Толчковый сигнал вперед	10	*
P06.05	Функция входа DI5 (HDI)	5: Толчковый сигнал назад 6: Увеличить	0	*
P06.06	Функция входа DI6 (дополнительная плата)	7: Уменьшить 8: Очистка смещения «Увеличить»/«Уменьшить» 9: Торможение выбегом	0	*
P06.07	Функция входа DI7 (дополнительная плата)	10: Сброс ошибки 11: Запрет реверса 12: Переключение команды запуска на клавиатуру	0	*
P06.08	Функция входа DI8 (дополнительная плата)	ленную сеть 14: Быстрая остановка	0	*
P06.09	Функция входа DI9 (дополнительная плата)	15: Внешняя остановка 16: Переключение между двигателем 1 и двигателем 2 17: Пауза работы 18: Торможение постоянным током	0	*
P06.13	Функция входа VDI1 (виртуальный DI)	19: Переключение постоянным током 19: Переключение между управлением крутящим моментом и скоростью 20: Контроль крутящего момента отключен	0	*
P06.14	Функция входа VDI2 (виртуальный DI)	21: Ступенчатая скорость 1 22: Ступенчатая скорость 2 23: Ступенчатая скорость 3	0	*
P06.15	Функция входа VDI3 (виртуальный DI)	24: Ступенчатая скорость 4 25: Переключение источника частоты 26: Переключение основного источника частоты на	0	*
P06.16	Функция входа VDI4 (виртуальный DI)	настройку цифрового задания частоты 27: Переключение основного источника частоты на Al1 28: Переключение основного источника частоты на Al2 29: Переключение основного источника частоты на Al3 30: Переключение основного источника частоты на Al4 31: Переключение основного источника частоты на высокочастотный импульсный вход 32: Переключение основного источника частоты на промышленную сеть	0	*


Параметр		Описание	По умолчанию	Свойство
Параметр	параметра	Описание 33: Переключение дополнительного источника частоты на числовую настройку частоты 34: Время ускорения и замедления 1 35: Время ускорения и замедления 2 36: Остановка ускорения и замедления 37: Внешняя ошибка 1 38: Внешняя ошибка 1 38: Внешняя ошибка 2 39: ПИД-пауза 40: ПИД — интегральная пауза 41: Переключение ПИД-параметров 42: Переключение ПИД-положительного/отрицательного реагирования 43: Предустановка ПИД, вход 1 44: Предустановка ПИД, вход 2 45: Переключение основной и вспомогательной ПИД-уставки 46: Переключение основной и вспомогательной обратной связи ПИД 47: Сброс статуса ПЛК	По умолчанию	Свойств
		48: Остановка времени ПЛК 49: Остановка частоты качаний 50: Входной сигнал счетчика 1 51: Сброс/очистка счетчика 1 52: Входной сигнал счетчика 2 53: Сброс/очистка счетчика 2 54: Сброс/очистка времени работы 55: Выбор времени ускорения и замедления двигателя 2 57: Входной сигнал пожара		
P06.17	Виртуальный источник входа	Разряд единиц: Входной источник VDI1 0 ÷ F: Р06.33 определяет бит 0 ÷ бит 15 параметра Разряд десяток: Входной источник VDI2 0 ÷ F: Р06.34 определяет бит 0 ÷ бит 15 параметра Разряд сотен: Входной источник VDI3 0 ÷ F: Р06.35 определяет бит 0 ÷ бит 15 параметра Разряд тысяч: Входной источник VDI4 0 ÷ F: Р06.36 определяет бит 0 ÷ бит 15 параметра	0003	*
P06.18	Функция форсиро- вания DI	Определить по битам: отключить; 1: включить битО-бит11: DI1-DI12 бит12-бит15: VDI1 VDI4 Когда бит активирован, состояние DI или VDI устанавливается соответствующим битом РОб.19	H00000000 L00000000	*
P06.19	Форсирование DI	Определить по битам 0: эффективна; 1: неэффективна бит0-бит11: DI1-DI12 бит12-бит15: VDI1-VDI4	0	益
P06.20	Инверсия цифрового входа	Определить по битам 0: положительная логика; 1: отрицательная логика Бит0-бит11: DI1-DI12 бит12-бит15: VDI1-VDI4 В обратной логике неактивный уровень клеммы DI становится активным уровнем	0	*


Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P06.21	Время задержки включения DI1	0,000÷30,000 c	0,000 с	☆
P06.22	Время задержки выключения DI1	0,000÷30,000 c	0,000 с	⋨
P06.23	Время задержки включения DI2	0,000÷30,000 c	0,000 с	☆
P06.24	Время задержки выключения DI2	0,000÷30,000 c	0,000 c	⋨
P06.25	Время задержки включения DI3	0,000÷30,000 c	0,000 c	⋨
P06.26	Время задержки выключения DI3	0,000÷30,000 c	0,000 c	⋨
P06.27	Время задержки включения DI4	0,000÷30,000 c	0,000 c	⋨
P06.28	Время задержки выключения DI4	0,000÷30,000 c	0,000 с	⋨
P06.29	Двух/трехпроводное управление работой	0: 2-проводной режим 1 (вперед + назад) 1: 2-проводной режим 2 (пуск + направление) 2: 3-проводной режим 1 (вперед + назад + включение) 3: 3-проводной режим 2 (запуск + вперед/назад + включение)	0	*

2-проводной режим 1

2-проводной режим 2

SB1

DI1 Пуск

DI3 Cron

DI2 Выбор
Вперед/Реверс

COM

3-проводной режим 2

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			

2-проводной режим 1 (РО6.29 = 0):

К1 замкнут — привод работает вперед, К2 замкнут – работает в обратном направлении, К1, К2 одновременно замкнуты или разомкнуты — инвертор останавливает работу.

2-проводной режим 2 (РО6.29 = 1):

При замкнутом К1 и разомкнутом К2 привод работает вперед, если К1 разомкнут привод останавливается. При замыкании К1 и К2 одновременно привод будет работать в режиме реверса.

3-проводной режим 1 (РО6.29 = 2):

DI3 настроен на трехпроводное управление (P06.03 = 3). Когда SB2 замкнута, при нажатии SB2 привод запустится вперед. При работе привода вперед при нажатии SB3 привод изменит направление вращения на реверс. Когда SB1 разомкнута, привод будет остановлен.

Во время работы SB1 должна быть замкнута, а SB2 и SB3 будут определять направление вращения.

3-проводной режим 2 (РО6.29 = 3):

DI3 настроен на трехпроводное управление (P06.03 = 3).

SB1 — нормально закрытая кнопка.

SB2 — нормально открытая кнопка.

При нажатии кнопки SB2 привод запустится. При нажатии кнопки SB1 привод остановится.

Контакт К используется для выбора направления вращения. Когда К разомкнут, привод работает вперед, а когда К разомкнут, привод работает в режиме реверса.

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P06.30	Время фильтрации цифрового входа	0,000÷0,100 с Установите время фильтра DI1 ÷ DI4 и HDI. Если помехи сильные или имеется дребезг контакта, увеличьте параметр, чтобы избежать неправильной работы	0,010 c	क्रे
P06.31	Функция защиты срабатывания входа на запуск при включении питания	О: Без защиты Когда сигнал пуска подается через цифровой вход, при включении питания инвертор запустится 1: Защита Когда сигнал пуска подается через цифровой вход, при включении питания инвертор не запустится. Для запуска необходимо снять и снова подать сигнал на цифровой вход после загрузки преобразователя частоты	0	*
P06.32	DI клемма включения / время готовности	0,000÷30,000 c	1,000 c	*
P06.33	Функция VDI1	Чтобы выбрать источник VDI1, выберите входной сигнал VDI1 вместе с разрядом единиц PO6.17	06,00	*
P06.34	Источник VDI 2	Чтобы выбрать источник VDI2, выберите входной сигнал VDI2 вместе с разрядом десяток P06.17	06,00	*
P06.35	Источник VDI 3	Чтобы выбрать источник VDI3, выберите входной сигнал VDI3 вместе с разрядом сотен P06.17	07,00	*
P06.36	Источник VDI 4	Чтобы выбрать источник VDI4, выберите входной сигнал VDI4 вместе с разрядом тысяч P06.17	44,00	*

Таблица 5.9 – Цифровые выходы и реле

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 07:	Цифровые выходы и р	реле		
r07.00	Статус цифрового порта DO	Определить по битам О: Выключен 1: Включен битО: DO1 бит1: DO2 бит2: Реле 1 бит3: Реле 2 бит4: DO3 бит5: DO4 бит6: DO5; бит7: DO6 бит8: VDO1 бит9: VDO2	-	•
P07.01	Функция DO1	0: Нет функции		
P07.02	Функция DO2 (HDO)	1: Готовность 2: Работа	0	☆
P07.03	Функция реле 1 (Т1A T1B T1C)	3: Ошибка 1 (неисправность останова) 4: Ошибка 2 (совпадает с ошибкой 1, за исключением	3	☆
P07.04	Функция реле 2 (T2A T2B T2C)	минимального напряжения) 5: Предупреждение (неисправность, но привод про-	0	⋨
P07.05	Функция DO3 (дополнительная плата)	_ должает работать) 6: Предел частоты качаний 7: Предел крутящего момента 8: Реверс	0	⋨
P07.06	Функция DO4 (дополнительная плата)	9: Достижение верхнего предела частоты 10: Достижение нижнего предела частоты 1 11: Достижение нижнего предела частоты 2	0	*
P07.07	Функция DO5 (дополнительная плата)	12: Достижение выходной частоты FDT1 (P08.00) 13: Достижение выходной частоты FDT2 (P08.02) 14: Достижение заданной частоты	0	*
P07.08	Функция DO6 (дополнительная плата)	15: Желаемая частота достигнута 1 РО8.05 16: Желаемая частота достигнута 2 РО8.07 17: Нулевая скорость (останов без напряжения)	0	*
P07.09	VDO1(вирту- альный DO1), функция	18: Нулевая скорость (останов с напряжением) 19: Нулевой ток 20: Выходной ток превышает предел 21: Достижение значения счетчика 1	0	☆
P07.10	VDO2 (вирту- альный DO2), функция	22: Достижение значения счетчика 1 23: Завершение цикла ПЛК 24: Достижение температуры IGBT 25: Предварительное предупреждение о перегрузке привода 26: Предварительное предупреждение о перегрузке двигателя 27: Предварительное предупреждение о перегреве двигателя 28: Недогрузка 29: Достигнуто время включения 30: Достигнуто время работы суммарное	0	*

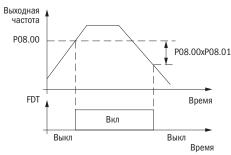
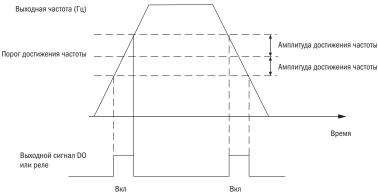
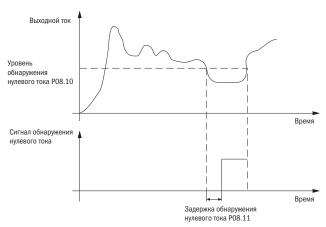

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
		31: Достигнуто время работы		
		32: Выход блока выбора переменных 1		
		33: Выход блока выбора переменных 2		
		34: Выход блока выбора переменных 3		
		35: Выход блока выбора переменных 4		
		36: Выход виртуального блока 1		
		37: Выход виртуального блока 2		
		38: Выход виртуального блока 3		
		39: Выход виртуального блока 3		
		40: Выход блока задержки 1		
		1 11 1		
		41: Выход блока задержки 2		
		42: Выход блока задержки 3		
		43: Выход блока задержки 4		
		44: Выход блока задержки 5		
		45: Работа в пожарном режиме		
P07.11	Инверсия выхода	Определить по битам	0	☆
		0: Отключено		
		1: Включено (инверсия)		
		бит0: D01		
		бит1: DO2		
		бит2: Реле 1		
		бит3: Реле 2		
		бит4: DO3		
		бит5: DO4		
		бит6: D05		
		бит7: D06		
		бит8: VD01		
		бит9: VD02		
		Примечание: положительная логика эквивалентна		
		нормальному открытому контакту, а отрицательная		
		логика эквивалентна нормальному закрытому контакту		
P07.12	Danie anname		0.000 a	র
PU1.12	Время задержки	0,000÷30,000 c	0,000 с	×
	включения DO1			
P07.13	Время задержки	0,000 ÷30,000 c	0,000 c	☆
	выключения D01			
P07.14	Время задержки	0,000÷30,000 c	0,000 c	☆
	включения DO2			
P07.15	Время задержки	0,000÷30,000 c	0,000 c	☆
101.10	выключения DO2	0,000 00,000 0	0,000 0	
DO 7.4.0		0.000.20.000.	0.000 -	☆
P07.16	Время задержки	0,000÷30,000 c	0,000 с	74
	включения реле 1			
P07.17	Время задержки	0,000÷30,000 c	0,000 c	☆
	выключения			
	реле 1			
P07.18	Время задержки	0,000÷30,000 c	0,000 c	☆
-	включения реле 2		,	
P07.19	Время задержки	0,000÷30,000 c	0,000 c	À
ru1.19	время задержки	0,000-30,000 0	0,000 6	A
	реле 2			

Таблица 5.10 – Настройка цифровых выходов

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			
труппа 08:	Настройка цифровог	о выхода		
P08.00	Частота (FDT1)	0,00 Гц ÷ максимальная частота (Р01.06)	50,00 Гц	☆
P08.01	Гистерезис частоты FDT1	0,0÷100,0 % FDT1	5,0 %	☆
P08.02	Частота (FDT2)	0,00 Гц ÷ максимальная частота (Р01.06)	50,00 Гц	☆
P08.03	Гистерезис частоты FDT2	0,0÷100,0 % FDT2 (P08.02)	5,0 %	☆


FDT используется для проверки выходной частоты инвертора. Когда выходная частота больше значения обнаружения частоты, FDT включается. Когда выходная частота меньше значения обнаружения частоты х (1 — Гистерезис частоты), FDT отключена. Когда выходная частота находится между двумя вышеупомянутыми значениями, выход FDT не меняется.

Р08.04 Диапазон достижения частоты	0,0÷100,0 % максимальная частота (Р01.06) Когда выходная частота находится между заданной частотой ± P08.04 × P01.06, соответствующий выходной сигнал D0 включится	3,0 %	À	
		Выходная частоты Задание частоты Сигнал достижения частоты Время		
P08.05	Порог достижения частоты 1	0,00 Гц ÷ максимальная частота (Р01.06)	50,00 Гц	☆
P08.06	Границы ампли- туды достижения 1	0,0÷100,0 % максимальная частота (Р01.06)	3,0 %	*
P08.07	Порог достижения частоты 2	0,00 Гц ÷ максимальная частота (Р01.06)	50,00 Гц	⋨
P08.08	Границы ампли- туды достижения 2	0,0÷100,0 % максимальная частота (Р01.06)	3,0 %	⋨


Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			

Когда выходная частота достигает позитивной или негативной амплитуды обнаружения значения частотного детектирования, DO выводит сигнал включения. Преобразователь K750 обеспечивает 2 параметра любого значения частотного детектирования приема сигналов, используемые, чтобы установить значение частоты и диапазон обнаружения частоты.

P08.09	Уровень обнару- жения нулевой частоты	0,00÷5,00 Гц	0,25 Гц	⋨
P08.10	Уровень обнару- жения нулевого тока	0,0÷100,0 % номинальный ток двигателя	5,0 %	\$
P08.11	Время задержки обнаружения нулевого тока	0,000÷30,000 с Примечание: когда выходной ток ≤ P08.10 и выдерживает время P08.11, соответствующее D0 включается	0,100 c	⋨

Когда выходной ток ≤ уровня обнаружения нулевого тока длится дольше, чем время задержки обнаружения нулевого тока, клемма DO выводит сигнал включения.

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P08.12	Порог превы-	0,0÷300,0 %	200,0 %	☆
	шения тока	Номинальный ток двигателя		
P08.13	Время задержки	0,000÷30,000 c	0,100 c	☆
	превышения тока	Примечание: когда выходной ток ≥ РО8.12 и выдер-		
		живает время РОВ.13, соответствующий Do или реле		
		включается		

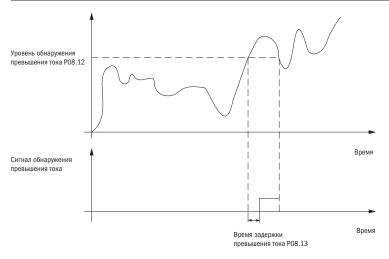


Таблица 5.11 — Настройки энкодера

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 10: І	Настройки энкодера			
P10.01	Тип энкодера	О: ABZ 1: ABZUVW 2: Резольвер 3: sin/cos энкодер • Обратитесь к производителю, если вам нужна плата энкодера	0	*
P10.02	Число импульсов на оборот	1÷65535	1024	*
P10.03	Направление импульса АВ	О: Вперед 1: В обратную сторону • Если режим управления VC (с энкодером), это значение можно получить путем автоматической настройки двигателя • Можно запустить двигатель без обратной связи и следить за r10.12 и r27.00, если они в одном направлении, если нет, то изменить это значение	0	*

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P10.07	Число оборотов двигателя без энкодера	1÷65535	1000	*
P10.08	Число оборотов механизма с энкодером	1÷65535	1000	*

Если энкодер не установлен на оси ротора двигателя, векторное управление асинхронным двигателем с энкодером эффективно, если установить отношение скорости вращения двигателя и энкодера (Р10.07 и Р10.08).

Скорость вращения двигателя =
$$\frac{P10.07}{P10.08} \times \text{Скорость энкодера}$$

Например: если скорость вращения двигателя - 1500 оборотов/мин а скорость энкодера - 1000 оборотов/мин, установите P10.07 = 1500, P10.08 = 1000.

P10.09	Время обнару- жения обрыва энкодера	0,0 (не обнаруживает) ÷ 10,0 с	2,0 с	*
P10.11	Время фильтрации вращения энко- дера	0÷32 цикл управления схемы регулирования скорости	1	*
r10.12	Скорость вра- щения обратной связи энкодера	Текущая скорость вращения при измерении, ед.: 0,01 Гц / 1 об/мин • единица устанавливается P21.17 • без числового символического адреса Код функции r27.02: бит 5 для направления; индикатор кнопочной панели [REV] указывает направление	_	•
r10.13	Текущее положение энкодера	0÷4 * номер импульса энкодера-1 Тенущее положение энкодера посылает Z-импульс как нулевую точку, движение двигателя вперед и один цикл к Z-импульсу, после положение к нулю	-	•
r10.14	Значение Z-импульсной маркировки	0÷4 * номер импульса энкодера-1 (используется для контроля проскальзывания энкодера и нарушения работы AB)	_	•
R10.15	Состояние сигнала UVW	0÷65535 Если тип кодера – ABZUVW, используется для контроля текущего уровня UVW. Если типом энкодера является резольвер или синусо-косинусный энкодер с CD: используется для контроля абсолютного положения энкодера	-	•

Таблица 5.12 – Параметры двигателя 1

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 11:	Параметры двигателя	1		
r11.00	Тип двигателя	0: Асинхронный двигатель переменного тока 1: Синхронный двигатель (специальное ПО)	0	•
P11.02	Номинальная мощность дви- гателя	0,1÷800,0 кВт Когда мощность меньше 1 кВт, 0,75 кВт установлен на 0,8 согласно принципу округления, двигатель 0,55 кВт установлен на 0,6 При изменении номинальной мощности двигателя привод переменного тока автоматически установит другой параметр, указанный на паспортной табличке двигателя, и параметр модели двигателя. Соблюдайте осторожность при использовании	Зависит от модели	*
P11.03	Номинальное напряжение двигателя	10÷2000 B	Зависит от модели	*
P11.04	Номинальный ток двигателя	P11.02 < 30 кВт: 0,01 A P11.02 ≥ 30 кВт: 0,1 A	Зависит от модели	*
P11.05	Номинальная частота двигателя	1,00÷600,00 Гц	50,00 Гц	*
P11.06	Номинальные обороты двигателя	1÷60 000 об/мин	Зависит от модели	*
P11.07	Номинальный коэффициент мощности двигателя	0,500÷1,000	Зависит от модели	*
r11.08	Номинальный крутящий момент двигателя	Только чтение, 0,1 H/м (P11.02 < 30 кВт); 1 H/м (P11.02 > 30 кВт)	_	•
r11.09	Число пар полюсов двига- теля 1	Только для чтения, оно будет автоматически рассчитываться в соответствии с номинальной частотой двигателя и номинальной скоростью вращения	_	•
P11.10	Автоматическая настройка / самообучение	О: Без автонастройки 1: Стационарная автонастройка асинхронного двигателя Она подходит в тех случаях, когда двигатель не может быть разъединен с нагрузкой. Автоматическая настройка параметров двигателя повлияет на точность управления 2: Динамическая или вращающаяся автонастройка асинхронного двигателя Комплексная автонастройка параметров двигателя, без нагрузки Рекомендуется использовать автоматическую настройку вращения, когда требуется высокая точность управления	0	*

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			

^{1:} Стационарная автонастройка асинхронного двигателя

Данный тип автонастройки используется тогда, когда нет возможности отключить двигатель от нагрузки или нагрузка имеет ограничения по движению.

Когда выполняется автонастройка, двигатель неподвижен. При такой настройке вычисляются параметры P11.11÷P11.13.

Стационарная настройка не может вычислить все необходимые параметры, поэтому сложно достичь максимального эффекта от векторного управления. Если двигатель не 4-полюсный с номинальной частотой 50 Гц, рекомендуется произвести динамическую автонастройку.

2: Динамическая автонастройка асинхронного двигателя

При динамической автонастройке преобразователь изначально производит стационарную автонастройку, а затем переходит к автонастройке с вращением. При динамической автонастройке преобразователь вычисляет параметры P11.11÷P11.18, а также определяет направление вращения энкодера (P10.03).

При вращении двигатель вращается вперед, и скорость может достигать 50÷100 % от номинальной скорости.

Чем меньше нагрузка во время самообучения, тем лучше эффект обучения.

Примечание: автонастройка запускается, когда команда «ПУСК» подается с пульта управления преобразователя. Пожалуйста, начинайте автонастройку, когда двигатель в холодном состоянии. Убедитесь, что двигатель находится в состоянии покоя, прежде чем начать автонастройку!

Пожалуйста, убедитесь, что параметры паспортной таблички двигателя были установлены до начала автонастройки. Для управления с обратной связью также следует установить параметры энкодера!

После настройки этого параметра нажмите кнопку «ПУСК» на кнопочной панели, автонастройка запустится, и преобразователь остановится самостоятельно после завершения автонастройки.

P11.11	Сопротивление	Единица: 0,001 Ом (P11.02 < 30 кВт)	Зависит	*
	статора асинхрон- ного двигателя	Единица: 0,01 мОм (Р11.02 ≥ 30 кВт)	от модели	
P11.12	Сопротивление ротора асинхрон- ного двигателя	Единица: 0,001 Ом (Р11.02 < 30 кВт) Единица: 0,01 мОм (Р11.02 ≥ 30 кВт)	Зависит от модели	*
P11.13	Индукция рассе- яния асинхрон- ного двигателя	Ед.: 0,01 мГн (P11.02 <3 0 кВт) Ед.: 0,001 мГн (P11.02 ≥ 30 кВт)	Зависит от модели	*
P11.14	Взаимная индуктивность асинхронного двигателя	Ед.: 0,1 мГн (Р11.02 <3 0 кВт) Ед.: 0,01 мГн (Р11.02 ≥ 30 кВт)	Зависит от модели	*
P11.15	Ток возбуждения холостого хода асинхронного двигателя	Ед.: 0,01 A (P11.02 < 30кВт) Ед.: 0,1 A (P11.02 ≥ 30кВт)	Зависит от модели	*
P11.16	Коэффициент насыщения тока возбуждения 1	Когда статус без номинального возбуждения	1,100	*
P11.17	Коэффициент насыщения тока возбуждения 2	Когда статус без номинального возбуждения	0,900	*
P11.18	Коэффициент насыщения тока возбуждения 3	Когда статус без номинального возбуждения	0,800	*

Таблица 5.13 – Параметры скалярного управления (U/f) двигателя 1

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 12: П		р управления (U/f) двигателя 1		
P12.00	Кривая напря-	0: Линейная	0	*
	жения/частота	1: Многоточечное		
		2: 1,3 мощности		
		3: 1.7 мощности		
		4: 2.0 мощности		
		5: Полное разделение напряжения/частоты		
		6: Полуразделение напряжения частоты		

 Когда кривая напряжения/частоты является прямой линией и кривой мощности, кривая частоты/напряжения выглядит следующим образом:

• Многоточечная линия кривой типа VF:

- Полное разделение напряжения/частоты
- Выходное напряжение и выходная частота полностью независимы. Выходная частота определяется источником частоты. Выходное напряжение определяется параметром Р12.20. Подходит для такого применения, как силовой двигатель переменной частоты или электродвигатель с большим пусковым моментом.
- VF-полуразделение

D. we sues

Здесь соотношение выходного напряжения и выходной частоты дано источником напряжения, формула выглядит следующим образом:

частота =	2 × источник напря	v III		
P12.01	Многоточечное напряжение/ частота 1 (F0)	0,0 Гц \div кривая многоточечного напряжения/частоты F1(P12.03)	0,00 Гц	*

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P12.02	Многоточечное напряжение/ частота Напряжение 0 (V0)	0,0÷100,0 %	0,0%	À
P12.03	Многоточечное напряжение/ частота Частота 1 (F1)	Кривая многоточечного напряжения/частоты F0 (P12.01) ÷ кривая многоточечного напряжения/ частоты F2(P12.05)	50,00 Гц	⋨
P12.04	Многоточечное напряжение/ частота Напряжение 1 (V1)	0,0÷100,0 %	100,0 %	\$
P12.05	Многоточечное напряжение/ частота Частота 1 (F2)	Кривая многоточечного напряжения/частоты F1 (P12.03) ÷ кривая многоточечного напряжения/частоты F3 (P12.08)	50,00 Гц	\$
P12.06	Многоточечное напряжение/ частота Напряжение 2 (V2)	0,0÷100,0 %	100,0 %	À
P12.07	Многоточечное напряжение/ частота Частота 3 (F3)	Кривая многоточечного напряжения/частоты F2 (P12.05) ÷ 600,00 Гц	50,00 Гц	☆
P12.08	Многоточечное напряжение/ частота Напряжение 3 (V3)	0,0÷100,0 %	100,0 %	À
P12.09	Усиление крутя- щего момента	0÷200 % 0 % автоматическое усиление крутящего момента	0 %	☆

- Автоматическое усиление крутящего момента
- Когда P12.09 = 0 = Автоматическое повышение крутящего момента, инвертор автоматически компенсирует выходное напряжение для улучшения крутящего момента на низких частотах в соответствии с фактической нагрузкой. Рекомендуется для линейной кривой напряжения/частоты.
- Ручное усиление крутящего момента
- Когда P12.09 не 0, это означает ручной усиление крутящего момента. Выходная частота 0: значение, увеличивающее крутящий момент = P12.09 × сопротивление статора двигателя × номинальный ток возбуждения. Усиление будет постепенно снижено при возрастании частоты. Если частота выше, чем 50 % номинальной частоты двигателя, усиление будет нулевым.
- Примечание: ручное усиление крутящего момента рекомендуется для линейной кривой и кривой мощности.

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P12.11	Усиление компен- сации скольжения	0÷200 % Используется для компенсации падения скорости управления напряжением/частотой асинхронного двигателя с нагрузкой и улучшения точности управления скоростью. Пожалуйста, настройте в соответствии со следующими принципами: Увеличьте настройку, когда скорость двигателя ниже заданного значения при нагрузке Уменьшите эту настройку, когда скорость двигателя выше заданного значения при нагрузке	100 %	☆
P12.12	Время фильтрации компенсации скольжения	 0,01÷10,00 с Используется для регулировки скорости и стабильности реакции управления напряжением/частотой на нагрузку: Уменьшите эту настройку, если реакция на нагрузку медленная Увеличьте эту настройку, когда скорость нестабильна 	1,00 с	☆
P12.13	Усилитель подавления колебаний	0÷2000 В режиме управления векторной ШИМ с двигателем на некоторой частоте могут происходить колебания тока, особенно с двигателем большой мощности. Двигатель не может работать стабильно или может возникнуть перегрузка по току. Этого явления можно избежать, отрегулировав этот параметр	300	åt .
P12.14	Эффективный диапазон частоты подавления колебаний	Эффективный диапазон подавления колебаний: 100÷1200 % Установите функцию подавления колебаний, 100 % соответствует номинальной частоте двигателя	110 %	*
P12.15	Выбор функции ограничения тока	О: Включена 1: Настраивается только выходное напряжение (ограничение тока для общего разделения напряжения/частоты) 2: Настраивается выходная частота	2	*
P12.16	Уровень ограни- чения тока	20÷180 % номинального тока привода	150 %	⋨
P12.17	Коэффициент ограничения тока слабой магнитной зоны	Оптимизирует динамические характеристики слабо- магнитной зоны,10÷100 %	0,60	計
P12.20	Источник напряжения для разделения напря- жения/частоты	0: Цифровая настройка 1: Al1 2: Al2 3: Al3 (IO-плата расширения) 4: Al4 (IO-плата расширения) 5: HDI 6: Ступенчатое задание 7: Промышленная сеть 8: ПИД	0	*

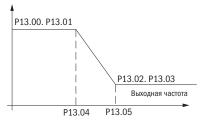

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P12.21	Цифровая настройка для напряжения разделения напря- жения/частоты	0,0÷100,0 %	0,0 %	☆
P12.22	Время ускорения и замедления напряжения разделения напряжения жения/частоты	0,00÷60,00 c	1,00 с	À
P12.23	Нормы напря- жения разделения напряжения/ частоты VF в соответствии с временем	Диапазон каждого часа изменения напряжения разделения напряжения/частоты: -100,00÷100,00 %	0,0 %	☆

Таблица 5.14 — Параметры векторного управления двигателя 1

Параметр	Наименование	Описание	По умолчанию	Свойство
Группа 13: І	параметра Векторное управление двигателе:	<u> </u> м 1		
P13.00	Пропорциональное увеличение скорости ASR_P1	0,1÷100,0	12,0	☆
P13.01	Постоянная времени интегрирования скорости ASR_T1	0,001÷30,000 c	0,200 c	⋨
P13.02	Пропорциональное увеличение скорости ASR_P2	0,1÷100,0	10,0	⋨
P13.03	Постоянная времени интегрирования скорости ASR_T1	0,001÷30,000 c	0,500 с	☆
P13.04	Частота 1 переключения параметров ASR	0,00 Гц ÷ частота 2 переключения ASR (P13.05)	5,00 Гц	⋨
P13.05	Частота 2 переключения параметров ASR	Частота 1 переключения ASR ÷ 600,00 Гц (Р13.04)	10,00 Гц	⋨

Установив пропорциональный коэффициент скорости и время интеграции регулятора скорости, вы можете настроить характеристики динамического отклика векторно-управляемой схемы регулирования скорости. Изменение времени интегрирования может ускорить динамический отклик системы, но если пропорциональный коэффициент слишком большой, в работе могут появиться колебания.

PI-параметры

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			

РІ имеет тесную связь с инерционностью системы. РІ-параметры настраиваются в зависимости от нагрузки. P13.00 и P13.01 — это параметры регулятора скорости для низкоскоростного использования, область действия — от нуля до P13.04 P13.02. А P13.03 — это параметры регулятора скорости для высокоскоростного использования, область действия от P13.05 до максимальной частоты е P13.04-P13.05 два набора параметров для линейных переходов.

P13.06	Выбор источника предельного	Разряд единиц: Источник предельного	00	*
	значения крутящего момента	значения крутящего момента		
	в режиме управления	0: Цифровая настройка		
	скоростью	1: Al1		
		2: AI2		
		3: Al3 (IO-плата расширения)		
		4: AI4 (IO-плата расширения)		
		5: HDI		
		6: Промышленная сеть		
		Разряд десяток: Источник предельного		
		значения электрического крутящего		
		момента		
		Совпадает с разрядом единиц		
P13.07	Предельное значение крутя- щего момента	0,0÷300,0 %	160,0 %	☆
P13.08	Верхний предел тормозного момента	0,0÷300,0 %	160,0 %	☆
P13.12	Время фильтрации указаний	Единица: цикл регулирования контура тока, 0÷100	2	☆
D40.40	тока крутящего момента	,	0.5	
P13.13	Пропорциональный коэффи-	0,01÷10,00	0,5	⋨
	циент усиления 1 автоматиче-			
	ского регулятора тока (ACR)			
P13.14	Время интегрирования 1 ACR	0,01÷300,00 мс	10,00 мс	☆
P13.15	Пропорциональный коэффициент усиления 2 ACR	1÷1000	0,5	*
P13.16	Время интегрирования 2 ACR	0,01÷300,00 мс	10,00 мс	☆

ACR: Автоматический регулятор тока.

Параметры ACR регулируют параметры настройки PI-контура тока, который непосредственно влияет на скорость динамического отклика и точность управления. Как правило, пользователям не нужно изменять значение по умолчанию. Применяется только к режиму векторного управления без платы энкодера (P00.04 = 0).

P13.17	Коэффициент усиления	0÷100 улучшает динамический отклик	0	*
	прямой связи напряжения	векторного управления		
P13.19	Диапазон допустимых рабочих напряжений	0,0÷50,0 % улучшает динамический отклик слабого магнитного искривления	5,0 %	☆
P13.20	Время интегрирования регулятора ослабления потока	0,001÷5,000 c	0,010 c	☆

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P13.22	Компенсация скольжения	50÷200 % Для бессенсорного векторного управления этот параметр используется для регулировки точности стабилизации скорости двигателя Когда скорость слишком низкая из-за большой нагрузки двигателя, этот параметр нужно увеличить, и наоборот	100 %	☆
P13.23	Указание нулевой скорости SVC (бессенсорного вектор- ного управления)	0: Нет действий 1: Выходной постоянный ток	0	*

Таблица 5.15 – Управление моментом

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 14: \	⊥ ∕правление крутящ	им моментом		Į.
P14.00	Источник задания момента	О: Цифровая настройка (Р14.01) 1: Al1 2: Al2 3: Al3 (ІО-плата расширения) 4: Al4 (ІО-плата расширения) 5: HDI 6: Промышленная сеть	0	*
P14.01	Цифровая настройка крутящего момента	-200,0+200,0 % Задание крутящего момента больше 0 указывает на то, что направление крутящего момента совпадает с прямым направлением двигателя. Меньше 0 указывает на то, что направление крутящего момента совпадает с обратным направлением вращения двигателя	0	☆
P14.02	Максимальный крутящий момент	Контрольная точка 10,0÷300,0 % Примечание: это контрольная точка крутящего момента. В качестве контрольной точки крутящего момента для аналоговых входов и высокочастотного импульсного входа. Также это максимальный выходной крутящий момент во время управления крутящим моментом	200,0 %	*
P14.03	Время ускорения крутящего момента	0,000÷60,000 с Примечание: время задания крутящего момента от нуля до номинального крутящего момента двигателя	0,100 с	\$
P14.04	Время замед- ления крутя- щего момента	0,000÷60,000 с Примечание: заданное время крутящего момента от номинального крутящего момента двигателя до нуля	0,100 с	☆
P14.05	Источник ограничения скорости	О: Цифровая настройка (Р14.06) 1: Аl1 2: Al2 3: Al3 (ІО-плата расширения) 4: Al4 (ІО-плата расширения) 5: HDI (высокочастотный импульсный вход) 6: Промышленная сеть	0	*

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P14.06	Настройка предельного значения скорости	-100,0÷100,0 %	100,0 %	[*]
P14.07	Ограничение скорости реверса	Относительно максимальной частоты: 0,0÷100,0 % Примечание: ограничение скорости для реверса, не заданного источником ограничения скорости	40,0 %	\$
P14.08	Настройка крутящего момента сверх предельной скорости	О: Симметричная команда на изменение крутящего момента После того как скорость двигателя превысит предельное значение скорости, источник входного крутящего момента устанавливает абсолютное значение эталонного крутящего момента, а направление крутящего момента всегда является тормозной силой 1: Контроль скорости После того как скорость двигателя превысит предельное значение скорости, войдите в режим оборотов, и инвертор максимально ограничит скорость в пределах предельного значения скорости	0	*
P14.10	Крутящий момент начальной силы трения при разгоне	0,0÷50,0 %	10,0 %	<u>}</u>
P14.11	Компенсация крутящего момента начальной силы трения при разгоне	0,00÷50,00 Гц Используется для преодоления статической силы трения на старте, а скорость выше, чем Р14.11, и компенсация статического момента трения отключается	1,00 Гц	*
P14.12	Коэффициент динамического трения	0,0÷50,0 % Динамическое трение при номинальной частоте вращения Примечание: крутящий момент трения скольжения двигателя при номинальной скорости вращения	0,0 %	⋨
P14.13	Начальное значение динамического трения	0,0÷50,0 %	0,0 %	*
r14.14	Предельное значение текущей ско- рости режима крутящего момента (вперед)	Отображает предельное значение текущей скорости вперед, единица: 0,01 Гц	_	•
r14.15	Предельное значение текущей скорости режима крутящего момента (в обратном направлении)	Отображает предельное значение текущей скорости в обратном направлении, ед.: 0,01 Гц	-	•

Таблица 5.16 – Управление энергосбережением

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 16: 1	Управление энергосбере	ежением		
r16.00	Счетчик электро- энергии (32 БИТ)	Ед. измерения: кВт/ч	_	•
r16.02	Мощность на выходе	Ед. измерения: 0,1 кВт, выходная мощность будет отрицательной в состоянии рекуперации	-	•
r16.03	Коэффициент мощности	-1,000÷1,000	-	•
P16.04	Очистка счетчика электрической энергии до нуля	0: Нет функции 1: Очистка до нуля	0	⋨
P16.05	Управление энерго- сбережением	0: Выключено	0	*
P16.06	Предел напряжения энергосбережения	0÷50 % (0 % означает, что управление энергосбережением дезактивировано, а больше чем 0 % означает, что управление энергосбережением активировано	0 %	À
P16.07	Врямя фильтрации энергосбережения	0,0÷10,0 c	2,0 с	☆

Примечание: P16.05 невидим (это полезно в управлении напряжением/частотой), и когда энергосбережение включено, выходной ток может быть уменьшен, а потери мощности могут быть уменьшены, когда нагрузка легкая. Например, вентилятор и насос имеют легкую нагрузку. Экономия энергии может быть достигнута, когда это легкие нагрузки или нагрузка изменяется медленно.

Таблица 5.17 – Расширенные параметры управления асинхронным двигателем

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 18:	- Расширенные параметры управления	а асинхронным двигателем		
P18.08	Управление нулевой скоростью SVC	Разряд единиц: режим обработки с нулевой скоростью в скоростном режиме 0: нет обработки 1: вкод постоянного тока (может предотвратить вибрацию вала при работе на нулевой скорости) Разряд десятков: ток возбуждения низкой частоты в скоростном режиме. 0: равен номинальному току возбуждения 1: уменьшен до Р18.09 Разряд сотен: ток возбуждения низкой частоты в моментном режиме. 0: равен номинальному току возбуждения 1: уменьшен до Р18.09	100	☆

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P18.09	Ток возбуждения низкой частоты SVC	30.0%÷100.0%	100.0%	☆
P18.10	Усиление скольжения	50%÷200%	100%	☆
P18.11	Коэффициент онлайн-регулировки параметра вектора замкнутого контура (VC)	0÷20 Чем больше значение, тем быстрее регулировка, но легко вызвать коле- бания. Установите 0 для отмены.	0	⋨

Таблица 5.18 – Пользовательские параметры

Р20.01 Пользовательский код функции 1 Р20.02 Пользовательский код функции 2 Р20.03 Пользовательский код функции 3 Р20.04 Пользовательский код функции 4 Р20.05 Пользовательский код функции 5 Р20.06 Пользовательский	00,00 00,00 00,00 00,00 00,00	· 查 · 查 · 查 · 查
Р20.02 Пользовательский код функции 2 Р20.03 Пользовательский код функции 3 Р20.04 Пользовательский код функции 4 Р20.05 Пользовательский код функции 5 Р20.06 Пользовательский	00,00	立立
Р20.03 Пользовательский код функции 3 Р20.04 Пользовательский код функции 4 Р20.05 Пользовательский код функции 5 Р20.06 Пользовательский	00,00	⋨
код функции 4 P20.05 Пользовательский код функции 5 P20.06 Пользовательский	00,00	
код функции 5 Р20.06 Пользовательский	,	☆
	00.00	
код функции 6	00,00	☆
P20.07 Пользовательский код функции 7	00,00	☆
P20.08 Пользовательский код функции 8	00,00	☆
P20.09 Пользовательский код функции 9	00,00	☆
P20.10 Пользовательский код функции 10	00,00	☆
P20.11 Пользовательский код функции 11	00,00	☆
P20.12 Пользовательский код функции 12	00,00	☆
P20.13 Пользовательский код функции 13	00,00	⋨
P20.14 Пользовательский код функции 14	00,00	⋨
P20.15 Пользовательский код функции 15	00,00	☆
P20.16 Пользовательский код функции 16	00,00	⋨

P20.17	Пользовательский код функции 17		00,00	☆
P20.18	Пользовательский код функции 18		00,00	☆
P20.19	Пользовательский код функции 19		00,00	☆
P20.20	Пользовательский код функции 20		00,00	☆
P20.21	Пользовательский код функции 21		00,00	☆
P20.22	Пользовательский код функции 22	Значение — это номер кода функции в диапазоне от 00,00 до 63,99.	00,00	⋨
P20.23	Пользовательский код функции 23	Пример: если вы хотите отобразить РОЗ.01 и	00,00	⋨
P20.24	Пользовательский код функции 24	Р13.00 в пользовательском режиме меню (-USr-), установите Р20.00 = 03.01, Р20.01 = 13.00	00,00	☆
P20.25	Пользовательский код функции 25	720.01 - 13.00	00,00	☆
P20.26	Пользовательский код функции 26		00,00	☆
P20.27	Пользовательский код функции 27		00,00	☆
P20.28	Пользовательский код функции 28		00,00	⋨
P20.29	Пользовательский код функции 29		00,00	☆
P20.30	Пользовательский код функции 30		00,00	⋨
P20.31	Пользовательский код функции 31		00,00	☆
P20.32	Пользовательский код функции 32		00,00	☆
P20.33	Пользовательский код функции 33		00,00	☆
P20.34	Пользовательский код функции 34		00,00	☆
P20.35	Пользовательский код функции 35		00,00	⋨
P20.36	Пользовательский код функции 36		00,00	☆
P20.37	Пользовательский код функции 37		00,00	⋨
P20.38	Пользовательский код функции 38		00,00	4
P20.38	Пользовательский код функции 39		00,00	\$
P20.39	Пользовательский код функции 39		00,00	☆

Таблица 5.19 – Кнопочная панель и дисплей

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 21:	Кнопочная панель и дис	сплей		
P21.00	Кнопочная панель, функция «Вверх/ вниз»	0: Выключена 1: Включена	1	*
P21.02	Функции кнопки МК	О: Без функции 1: Толчок вперед 2: Толчок в обратную сторону 3: Переключение вперед/реверс 4: Быстрый останов 5: Торможение до останова 6: Левый сдвиг курсора (LCD-пульт)	1	*
P21.03	Функция останова	0: Действителен только при управлении с клавиатуры 1: Действителен на всех командных каналах	1	⋨
P21.04	Контрольный дисплей 1	00,00÷99,99	27,00	⋨
P21.05	Контрольный дисплей 2	00,00÷99,99	27,01	⋨
P21.06	Контрольный дисплей 3	00,00÷99,99	27,06	⋨
P21.07	Контрольный дисплей 4	00,00÷99.99	27,05	⋨
P21.08	Контрольный дисплей 5	00,00÷99,99	27,03	⋨
P21.09	Контрольный дисплей 6	00,00÷99,99	27,08	4
P21.10	Контрольный дисплей 7	00,00÷99,99	06,00	4
P21.11	Опция параметров контрольного дисплея рабочего состояния	Разряд единиц до разряда сотен устанавливает параметры монитора 1-4 О означает без отображения, 1÷7 соответствует параметрам монитора 1÷7 Разряд единиц: Выберите первый дисплей мониторинга, 0÷7 Разряд десяток: Выберите второй дисплей мониторинга, 0÷7 Разряд сотен: Выберите третий дисплей мониторинга, 0÷7 Разряд тысяч: Выберите четвертый дисплей мониторинга, 0÷7	5321	À
P21.22	Опция параметров контрольного дисплея состояния останова	Совпадает с Р21.11	0052	⋨

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			

Контрольный дисплей состоит из 4 переменных мониторов состояния. Переменные мониторы отличаются в состоянии работы и останова. Мониторы для каждого состояния настраиваются в параметрах P21.11 и P21.12. Нажмите кнопку «Сдвиг» для переключения мониторов. Для отключения монитора необходимо установить значение «О» в параметрах P21.11 и P21.12.

Возьмем интерфейс монитора в состоянии останова, например P21.12 = 0052. Есть 2 переменные монитора, которые являются r27.01 (параметр отображения монитора 2, P21.05 = 27.01) и r27.03 (параметр отображения монитора 5, P21.08 = 27.03). Нажмите клавишу «Сдвиг» на клавиатуре, чтобы переключиться между двумя мониторами, как показано ниже.

P21.13	Индивидуальная настройка циф-	Разряд единиц: Выбор функции быстрого редактирования	01	*
	ровой кнопочной	0: Недействительна		
	панели	1: Числовая установка частоты		
		2: Числовая настройка крутящего момента 3: Цифровая настройка ПИД 0		
		Примечание: функция быстрого редактирования		
		означает, что, если текущее значение мониторинга		
		является выходной частотой или частотой команд в		
		состоянии мониторинга, нажмите клавишу «Ввод»,		
		чтобы непосредственно войти в интерфейс редак-		
		тирования параметров. Редактируемые параметры		
		задаются одной цифрой этого кода функции		
		Разряд десяток: Выбор сброса указателя монитора		
		0: Когда состояние дисплея находится в состоянии		
		мониторинга из другого состояния или когда		
		состояние запущенного мониторинга и состояние		
		остановки мониторинга переключаются, ранее		
		записанное положение указателя мониторинга		
		будет восстановлено		
		1: Когда состояние дисплея находится в состоянии		
		мониторинга другим статусом или когда состояние		
		мониторинга запущенного состояния и состояния		
		остановки переключаются, указатель монитора		
		будет сброшен на значения Р21.11 или Р21.12		
		Примечание: при включении питания указатель		
		мониторинга выключения указывает на бит Р21.12,		
		указатель мониторинга работы указывает на бит Р21.11		
P21.14	Коэффициент ото-	0,001÷65,000	30,000	含
	бражения скорости под нагрузкой			

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P21.15	Число десятичного знака скорости под нагрузкой	0÷3	0	*
r21.16	Отображение ско- рости под нагрузкой	Скорость под нагрузкой = P27.00 × P21.10 Число десятичного знака определяется параметром P21.11	_	•
P21.17	Единица отобра- жения скорости	0: 0,01 Гц 1: 1 об/мин • Отображает единицу для выбора РОО.07, r27.00, r27.01, r10.12	0	*

Таблица 5.20 — Конфигурация привода переменного тока

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 22:	Конфигурация привод	а переменного тока		
P22.00	Частота коммутации / несущая частота	Зависит от мощности привода ≤ 7,5 кВт: 1÷12,0 кГц 11÷45 кВт: 1÷8 кГц ≥ 55 кВт: 1÷4 кГц Несущая частота может быть уменьшена при следующих ситуациях: 1. Большой ток утечки электропривода 2. Помехи, создаваемые инвертором, оказывают влияние на периферийные устройства 3. Большое расстояние проводки между инвертором и двигателем Несущая частота может быть увеличена при слишком большом шуме при работе электродвигателя	Зависимая	青

Несущая частота будет влиять на шум двигателя и электромагнитные помехи инвертора.

Если несущая частота увеличена, это улучшит качество переменного тока на выходе преобразователя (меньший гармонический ток и более низкий шум мотора).

Примечания:

Заводское значение по умолчанию является оптимальным в большинстве случаев. Изменение этого параметра не рекомендуется.

Если несущая частота превышает заводское значение по умолчанию, инвертор должен быть использован с пониженнием номинальной мощности, так как более высокая несущая частота приведет к большим потерям при переключении, более высокому повышению температуры инвертора и более сильным электромагнитным помехам.

Если несущая частота ниже заводской по умолчанию, возможность уменьшения выходного крутящего момента двигателя и большого гармонического тока.

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P22.01	Регулировка несущей частоты	Разряд единиц: Регулировка в соответствии с вращением 0: Нет 1: Да Разряд десяток: Регулировка в соответствии с температурой 0: Нет 1: Да Инвертор может автоматически регулировать несущую частоту в соответствии с его температурой. Эта функция может уменьшить возможность сигнала о перегреве инвертора	00	*
P22.02	Низкоскоростная несущая частота	1,0÷15,0 кГц	Зависит от модели	計
P22.03	Высокоскоростная несущая частота	1,0÷15,0 кГц	Зависит от модели	計
P22.04	Точка переключения несущей частоты 1	0,0÷600,00 Гц Когда несущая частота регулируется в соответствии с выходной частотой, несущая частота, установ- ленная в Р22.02, используется, когда выходная частота ниже этого установленного значения	10,00 Гц	\$
P22.05	Точка переключения несущей частоты 2	0,00÷600,00 Гц Когда несущая частота регулируется в соответствии с выходной частотой, несущая частота, установленная Р22.03, используется, когда выходная частота выше этого установленного значения	50,00 Гц	À
P22.06	Способ ШИМ	О: SVPWM — векторная ШИМ Обычно используется она 1: SVPWM + DPWM (векторная ШИМ + двухфазная ШИМ) Использование этого метода модуляции позволяет уменьшить коммутационные потери инвертора и снизить вероятность аварийного перегрева инвертора. Однако шум двигателя в разрезе промежуточной частоты вращения будет слишком велик 2: ШИМ случайным образом Шум, создаваемый двигателем, является более мягким, а не резким скрипом 3: Синусоидальная ШИМ Она используется только в особых ситуациях	0	*
P22.07	Точка переключения синусоидальной ШИМ	10÷100 % (коэффициент модуляции) Когда Р22.06 установлен на 1, увеличение значения этой настройки может уменьшить шум в разрезе промежуточной частоты вращения	30 %	*
P22.08	Модулирующий предел	50÷110 % Используется для определения рабочего цикла инвертора со стороны IGBT. Сверхмодуляция допускается, когда она установлена на 100 % или более, а допустимая сверхмодуляция углубляется, когда заданное значение увеличивается со 101 до 110	105 %	*

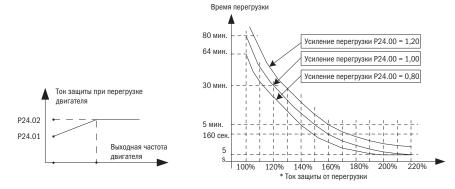
Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P22.10	Функция AVR (автоматического регулятора напряжения)	О: Выключен 1: Включен Когда функция AVR включена, влияние изменения напряжения шины постоянного тока на выходное напряжение может быть устранено	1	*
P22.11	Функция динамического торможения	О: Выключена 1: Включена 2: Включена, только когда используется линейное напряжение Этот параметр используется только для управления встроенным тормозным блоком. Для моделей без встроенного тормозного блока эта настройка может быть проигнорирована	1	录
P22.12	Напряжение динамического торможения	320÷400 В (уровень 220 В) 600÷800 В (уровень 380 В) 690÷900 В (уровень 480 В) 950÷1250 В (уровень 690 В)	Зависит от модели	*
P22.13	Переключение чередования фаз на выходе	О: Выключено 1: Изменение чередования Эквивалентно изменению местами фаз V и W При использовании энкодера необходимо повторно произвести автонастройку для корректировки направления вращения двигателя	0	*
P22.14	Способ охлаждения (управление венти- ляторами)	О: Вентилятор включен при работе инвертора 1: Принудительное охлаждение при включении преобразователя 2: Регулировка в соответствии с температурой привода	0	⋨
P22.15	Тип привода HD/ND	О: НD-тип 1: ND-тип • HD означает тяжелый режим работы (постоянная крутящая нагрузка) • ND означает легкий режим работы (вентилятор и насос)	0	*
r22.16	Номинальная мощ- ность привода	Только чтение ед. измерения: 0,1 кВт		•
r22.17	Номинальное напря- жение привода	Только чтение ед. измерения: В	-	•
r22.18	Номинальный ток привода	Только чтение ед. измерения: 0,1 А	_	•

Таблица 5.21 – Настройка защитных функций преобразователя

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 23: І	Настройка защитных фун	нкций преобразователя		
	Опция контроля напряжения шины постоянного тока	Разряд единиц: Управление при максимальном перенапряжении 0: Управление отключено 1: Управление включено 2: Автоматическое настройка управления Функция управления перенапряжением ограничивает количество энергии, вырабатываемой двигателем, увеличивая время замедления или даже увеличивая скорость, избегая перенапряжения на стороне постоянного тока и сообщая о неисправностях перенапряжения	01	*
		Разряд десяток: Управление пониженным напряжением О: Отключено 1: Управление по пониженному напряжению (преобразователь замедляется до нулевой скорости и находится в режиме ожидания, после восстановления питания он снова будет работать автоматически) 2: Замедление до нулевой скорости (замедляется до нулевой скорости и останавливается) Функция отключения при низком напряжении уменьшает энергопотребление двигателя или переводит его в генераторный режим, чтобы избежать, сбоя на стороне постоянного тока Функция контроля низкого напряжения используется, когда качество электроэнергии низкое и есть необходимость продлить работу преобразователя частоты без ошибок как можно дольше		
P23.01	Порог повышенного напряжения	Уровень 220 В: 320÷400 В Уровень 380 В: 540÷800 В Уровень 480 В: 650÷950 В	Зависит от модели	*
P23.02	Порог пониженного напряжения	Уровень 220 В: 160÷300 В Уровень 380 В: 350÷520 В Уровень 480 В: 400÷650 В	Зависит от модели	*
P23.03	Коэффициент отно- шения отключения при повышенном напряжение	0÷10,0	1,0	À
P23.04	Коэффициент отно- шения отключения при пониженном напряжении	0÷20,0	4,0	含
P23.05	Порог отключения при пониженном напряжении	Уровень 220 В: 160÷300 В Уровень 380 В: 350÷520 В Уровень 480 В: 400÷650 В	Зависит от модели	*

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P23.06	Время обнаружения неисправностей при пониженном напряжении	0,0÷30,0 c	1,0 c	À
P23.07	Быстрое ограни- чение тока	0: Дезактивировано 1: Активировано	1	*
P23.10	Значение обнару- жения превышения скорости	0,0÷120,0 % максимальной частоты	120,0 %	\$
P23.11	Время обнару- жения превышения скорости	0,0÷30,0 с 0,0: Отключено	1,0 c	A
P23.12	Значение обна- ружения слишком большого колебания скорости	0,0÷100,0 % (номинальной частоты двигателя)	20,0 %	*
P23.13	Время обнаружения слишком большого колебания скорости	0,0÷30,0 с 0,0: Отключено	0,0 с	A
P23.14	Время обнаружения потерь входной фазы	0,0÷30,0 c	8,0 c	₽
P23.15	Обнаружение дисбаланса потери выходной фазы	0+100 %	30 %	☆
P23.18	Выбор действия защиты от неис- правностей 1	Разряд единиц: Потеря входной фазы 0: Торможение выбегом 1: Экстренный стоп 2: Останов в соответствии с режимом останова 3: Продолжение работы Разряд десяток: Внешняя ошибка 1, определяемая пользователем, совпадает с разрядом единиц Разряд сотен: Внешняя ошибка 2, определяемая пользователем, совпадает с разрядом единиц Разряд тысячных: Ошибка канала связи совпадает с разрядом единиц	0000	注
P23.19	Выбор действия защиты от неис- правностей 2	Разряд единиц: Перегрузка двигателя 0: Торможение выбегом 1: Экстренный стоп 2: Останов в соответствии с режимом останова 3: Продолжение работы Разряд десяток: Перегрев двигателя совпадает с разрядом единиц Разряд сотен: Слишком большое колебание скорости совпадает с разрядом единиц Разряд тысячных: Превышение скорости двигателя совпадает с разрядом единиц	0000	立

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P23.20	Выбор действия защиты от неис- правностей 3	Разряд единиц: Потеря обратной связи ПИД во время работы 0: Торможение выбегом 1: Экстренный стоп 2: Останов в соответствии с режимом останова 3: Продолжение работы Разряд десяток: Зарезервировано совпадает с разрядом единиц Разряд сотен: Зарезервировано совпадает с разрядом единиц Разряд тысячных: Зарезервировано совпадает с совпадает с разрядом единиц	0000	☆
P23.21	Выбор действия защиты от неис- правностей 4	Разряд единиц: Потеря фазы выхода 0: Выбег 1: Быстрый останов 2: Останов в соответствии с режимом останова Разряд десяток: Ошибка EEPROM (ЭСППЗУ) 0: Торможение выбегом 1: Экстренный стоп 2: Останов в соответствии с режимом останова 3: Продолжение работы Разряд сотен: (зарезервировано) Разряд сотен: Пониженная нагрузка 0: Торможение выбегом 1: Экстренный стоп 2: Останов в соответствии с режимом останова 3: Продолжение работы	0000	\$
P23.24	Сброс ошибки	Определять в соответствии с битами: бит 0 — пониженное напряжение бит 1 — перегрузка преобразователя бит 2 — перегрев преобразователя бит 3 — перегрузка двигателя бит 4 — перегрев двигателя бит 5 — ошибка пользователя 1 бит 6 — ошибка пользователя 2 бит 7÷15 — зарезервировано	0	**



Параметр	Наименование параметра	Описание	По умолчанию	Свойство	
Р23.25 Источник ошибки для автоматиче- ского сброса		Определять в соответствии с битами: бит 0 — превышение тока во время ускорения бит 1 — превышение тока во время ускорения, время замедления бит 2 — превышение тока во время ускорения, время постоянной скорости бит 3 — перенапряжение во время ускорения бит 4 — перенапряжение во время ускорения бит 5 — перенапряжение во время работы бит 6 — пониженное напряжение преобразователя бит 7 — потеря входной фазы бит 8 — перегрузка преобразователя бит 10 — перегрузка двигателя бит 11 — перегрев двигателя бит 12 — ошибка пользователя 1 бит 13 — ошибка пользователя 2 бит 14 — зарезервировано бит 15 — зарезервировано	0	ά	
P23.26	Количество попыток автоматического сброса	0+99	0	☆	
P23.27	Действия числового выхода при сбросе ошибки	0: Дезактивировано 1: Активировано	0	₽	
P23.28	Интервал времени автоматического сброса ошибок	0,1÷300,0 c	0,5 с	☆	
P23.29	Время очистки авто- матического сброса времени ошибки	0,1+3600,0 c	10,0 c	☆	
P23.30	Выходная частота во время ошибки	О: Работа при текущей частоте 1: Работа при установленной частоте 2: Работа при верхнем пределе частоты 3: Работа при нижнем пределе частоты 4: Работа на резервной частоте	0	\$	
P23.31	Резервная частота	0,0÷100,0 % (максимальная частота)	5,0 %	☆	

Таблица 5.22 – Параметры защиты двигателя

Параметр	Наименование	Описание	По умолчанию	Свойство	
	параметра				
Группа 24: Г	Тараметры защиты двиг	ателя			
P24.00	Коэффициент усиления защиты двигателя от перегрузки	0,20÷10,00 Чем больше значение, тем дольше допустимая перегрузка и тем выше риск повреждения двига- теля при перегреве.	1,00	*	
P24.01	Ток перегрузки дви- гателя при нулевой скорости	50,0÷150,0 %	100,0 %	⋨	
P24.02	Ток перегрузки двигателя при номинальной скорости	50,0÷150,0 %	115,0 %	*	

Двигатель с крыльчаткой на валу двигателя имеет плохой теплоотвод при работе на низких частотах. P24.01 и P24.02 используются для установки точки перегрузки при нулевой скорости нуля и точки перегрузки при номинальной скорости, чтобы достигнуть более приемлемой работы защиты двигателя при различных скоростях

Преобразователь защищает двигатель от перегрузки только при включении P24.04, P24.00 используется для регулировки времени кривой обратного времени перегрузки. Минимальное время перегрузки составляет 5,0 с. Примечание: пользователь должен правильно установить три параметра — P24.00, P24.01 и P24.02 — в соответствии с фактической перегрузочной способностью двигателя. Если установлено чрезмерное значение, двигатель подвержен повреждению при перегреве, а инвертор заблаговременно не предупредит защиту об опасности.

P24.03	Уровень предупреж-	50÷100 %,	80 %	☆
	дения о перегрузке	Когда выходной ток больше, чем это значение,		
	двигателя	то выбранный DO с функцией 26 группа паметров		
		(предупреждение перегрузки двигателя)		
P24.04	Опция защиты	Разряд единиц: Выбор защиты двигателя 1	11	☆
	двигателя	0: Выключить защиту при перегрузке		
		1: Включить защиту при перегрузке		
		Разряд десяток: Выбор защиты двигателя 2		
		0: Выключить защиту при перегрузке		
		1: Включить защиту при перегрузке		

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			

В настройке по умолчанию преобразователя нет тепловой защиты двигателя. Чтобы включить эту защиту, пожалуйста, убедитесь, что данный двигатель имеет датчик температуры. РТС означает датчик двигателя, РТС1000 и РТС100 — это разные типы датчиков двигателя. Если ваш двигатель имеет датчик температуры, вам нужно использовать нашу опциональную карту для подключения РТС1000 или РТС100 и установить тип датчика температуры (Р24.08), чтобы запустить защиту двигателя от перегрева. Пользователь может просматривать текущую температуру двигателя через функциональный код г27.07. Если температура двигателя превышает порог тревоги перегрева двигателя (Р24.10), цифровой выход с функцией — «25: включена сигнализация перегрузки двигателя» замкнется. Если температура двигателя превышает порог защиты от перегрева двигателя (Р24.09), инвертор подаст сигнал тревоги об ошибке перегрева двигателя (Если температура) двигателя (Р24.09) из запустит соответствующее защитное действие.

★ Ошибка перегрева двигателя (Er. oH 3) не может быть сброшена немедленно до тех пор, пока температура двигателя не упадет до значения намного ниже порога защиты.

P24.08	Тип датчика температуры двигателя	0: HeT 1: PT100 2: PT1000	0	*
		3: KTY84-130		
P24.09	Порог ошибки пере- грева двигателя	0,0÷200,0 °C	120,0 °C	\$
P24.10	Порог предупреж- дения о перегреве двигателя	0,0+200,0 °C Когда температура двигателя, определяемая датчиком температуры, превышает это значение, выбранный DO с функцией «27: предупреждение о превышении температуры двигателя» замкнется	90,0 °C	幸
r24.11	Температура двигателя	Ед. измерения 0,1 °C Отображает температуру двигателя, определяемую датчиком температуры	_	•
P24.12	Защита пони- женной нагрузки	0: Отключена 1: Включена	0	\$
P24.13	Уровень обнару- жения пониженной нагрузки	0,0+100 %	10,0 %	⋨
P24.14	Время обнару- жения пониженной нагрузки	0,000÷60,000 c	1,000 c	\$

Если выходной ток ниже уровня пониженной нагрузки (P24.13) и это состояние продолжается в течение времени пониженной нагрузки (P24.14), когда включена защита от пониженной нагрузки (P24.12 = 1) и инвертор находится в рабочем режиме, а не в динамическом торможении, то инвертор выдает отчет об ошибке защиты от пониженной нагрузки (Er. LL) и останавливает как настройку защиты от разгрузки (P24.12).

Таблица 5.23 – Информация о текущей ошибке

Параметр	Наименование параметра	По умолчанию	Свойство	
Группа 25: І	Інформация о текущей с	ошибке		
r25.00	Тип текущей ошибки	Подробнее см. в главе 6 «Диагностика неисправностей и их решение»	_	•
r25.01	Выходная частота при ошибке	Ед. измерения: 0,01 Гц	_	•
r25.02	Выходной ток при ошибке	Ед. измерения: 0,1 А	_	•
r25.03	Напряжение шины при ошибке	Ед. измерения: В		•
r25.04	Состояние режима работы 1 при ошибке	См. параметр r27.10 для подробностей	_	•
r25.05	Состояние циф- ровых входов при ошибке	Бит 0 ÷ бит 6 соответствуют DI1 ÷ DI7 Бит 12 ÷ бит 15 соответствуют VDI1 ÷ VDI4	_	•
r25.06	Рабочее время при ошибке	Ед. измерения: 0,01 с	_	•
r25.07	Суммарное рабочее время при ошибке	Ед. измерения: час	_	•
r25.08	Заданная частота при ошибке	Ед. измерения: 0,01 Гц	_	•
r25.09	Заданный момент при ошибке	Ед. измерения: 0,1 % по сравнению с номинальным крутящим моментом двигателя	_	•
r25.10	Скорость энкодера при ошибке	Ед. измерения: об/мин	_	•
r25.11	Электрический угол при ошибке	Ед. измерения: 0,1°	_	•
r25.12	Состояние режима работы 2 при ошибке	См. параметр r27.11 для подробностей	_	•
25.13	Состояние выходных клемм при ошибке	Определять в соответствии с ед. измерения: 0: Выключено 1: Включено бит0: D01 бит1: D02 бит2: Реле бит3 ÷ бит7: Зарезервировано бит8: VD01 бит9: VD02	_	•
r25.14	Температура радиа- тора при ошибке	Ед. измерения: 0,1 °C	_	•
r25.15	Низкоуровневая ошибка	Тип неисправности см. в главе 6 «Диагностика неисправностей и их решение»	_	•
r25.16	Тип предупреждения	Тип неисправности см. в главе 6 «Диагностика неисправностей и их решение»	_	•

Таблица 5.24 – Журнал ошибок

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 26: }	Курнал ошибок		-	
r26.00	Тип последней ошибки 1	См. подробности в главе 6	_	•
r26.01	Выходная частота при ошибке 1	Ед. измерения: 0,01 Гц	_	•
r26.02	Выходной ток при ошибке 1	Ед. измерения: 0,1 А	_	•
r26.03	Напряжение шины при ошибке 1	Ед. измерения: В	_	•
r26.04	Состояние режима работы 1 при ошибке 1	См. параметр r27.10	_	•
r26.05	Состояние цифровых выходов при ошибке 1	бит 0 ÷ бит 6 соответствуют DI1÷DI7 бит 12 ÷ бит 15 соответствуют VDI1÷VDI4	_	•
r26.06	Рабочее время при ошибке 1	Ед. измерения: 0,01 с	_	•
r26.07	Суммарное рабочее время при ошибке 2	Ед. измерения: час	_	•
r26.08	Тип последней ошибки 2	Совпадает с описанием последней ошибки	_	•
r26.09	Выходная частота при ошибке 2		_	•
r26.10	Выходной ток при ошибке 2		-	•
r26.11	Напряжение шины при ошибке 2		_	•
r26.12	Состояние режима работы 1 при ошибке 2		_	•
r26.13	Состояние цифровых выходов при ошибке 2		-	•
r26.14	Рабочее время при ошибке 2		_	•
r26.15	Суммарное рабочее время при ошибке 2		_	•
r26.16	Тип последней ошибки 3	Совпадает с описанием последней ошибки	_	•
r26.17	Выходная частота при ошибке 3		_	•
r26.18	Выходной ток при ошибке 3		_	•
r26.19	Напряжение шины при ошибке 3		_	•
r26.20	Состояние режима работы 1 при ошибке 3		_	•
r26.21	Состояние цифровых выходов при ошибке 3		_	•
r26.22	Рабочее время при ошибке 3		_	•
r26.23	Суммарное рабочее время при ошибке 3		_	•

Таблица 5.25 – Монитор состояния

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 27: М	Монитор состояния			1
r27.00	Рабочая частота	Может установить единицу измерения в соответствии с параметром P21.07	_	•
r27.01	Установленная частота	Может установить единицу измерения в соответствии с параметром P21.07	_	•
127.02	Индикатор направ- ления	бит 0: Направление рабочей частоты (0— положительное направление; 1— отрицательное направление, то же самое ниже) бит 1: Направление частоты бит 2: Направление основной частоты бит 3: Направление дополнительной частоты бит 4: Направление «Увеличить/уменьшить» бит 5: Направление частоты обратной связи энкодера Зарезервировано свыше бит 6	_	•
r27.03	Напряжение шины	Ед. измерения: 1 В	_	•
r27.04	Настройка разде- ления напряжения/ частоты	Ед. измерения: 0,1 %	-	•
r27.05	Выходное напря- жение	Ед. измерения: 0,1 В	-	•
r27.06	Выходной ток	Ед. измерения: 0,1 А	_	•
r27.07	Процент выходного тока	Ед. измерения: 0,1 % (100 % номинального тока двигателя)	_	•
r27.08	Выходной крутящий момент	0,1 %	_	•
r27.09	Задание крутящего момента	0,1 %	_	•
r27.10	Состояние 1 режима работы приводов	бит 0: Состояние работы: 0 — останов; 1 — пуск бит 1: Направление двигателя: 0 — вперед; 1 — назад бит 2: Сигнал готовности: 0 — не готов; 1 — готов бит 3: Состояние ошибки: 0 — нет ошибки; 1 — ошибка бит 4+5: Тип ошибки: 0 — свободный останов; 1 — быстрый останов; 2 — останов в соответствии с режимом останов; 3 — продолжение работы бит 6: Состояние толчка: 0 — без толчка; 1 — состояние толчка: 0 — без толчка; 1 — состояние толчка бит 7: Автонастройка: 0 — нет; 1 — да бит 8: Торможение постоянным током: 0 — без торможение постоянным током; 1 — торможение постоянным током бит 9: Зарезервировано бит 10+11: Ускорение и замедление: 0 — останов/нулевой выход; 1 — повышение скорости; 2 — замедление; 3 — постоянная скорость бит 12: Состояние предупреждения: 0 — без предупреждение		•

Параметр	Наименование параметра				
		бит 13: Состояние ограничения тока: 0 — нет; 1 — да бит 14: Регулировка отключения при перенапря- жении: 0 — нет; 1 — да бит 15: Регулировка пониженного напряжения при отключении: 0 — нет; 1 — да			
r27.11	Режим работы приводов 2	бит 0÷1: Источник текущей команды: 0 — кно- почная панель; 1 — клемма; 2 — канал связи бит 2÷3: Опция двигателя: 0 — двигатель 1; 1 — двигатель 2 бит 4÷5: Текущее управление двигателем: 0 — VF; 1 — SVC; 2 — VC бит 6÷7: Текущий режим работы: 0 — скорость; 1 — кругящий момент; 2 — положение	-	•	
r27.13	Время работы	0÷65535 мин	0 мин	•	
r27.14	Время включения	Ед. измерения: час	_	•	
r27.15	Накопленное время работы	Ед. измерения: час	_	•	
r27.18	Температура радиатора	Ед. измерения: 0,1 °C		•	
r27.19	Основная частота	Ед. измерения: 0,01 Гц	_	•	
r27.20	Дополнительная частота	Ед. измерения: 0,01 Гц	_	•	
r27.21	Частота увеличить/ уменьшить	Ед. измерения: 0,01 Гц	_	•	

Таблица 5.26 – Параметры и регистры Modbus

Параметр	Наименование	Описание	По умолчанию	Свойство			
	параметра						
Farmer 201 Demicrary Medica P20							

Группа 29: Регистры Modbus P29

Этот набор параметров эквивалентен регистрам 0×70××:

Пример: P29.00 (адрес 0×1D00) эквивалентен 0×7000;

P29.04 (адрес 0×1D04) эквивалентен 0×7004;

29.00	Коммуникационные	Значения и функции следующие:	_	☆
	команды	0×0000: запущенная команда недействительна,		
		что эквивалентно тому, что все клавиши под управ-		
		лением клавиатуры недействительны;		
		0×0001: Пуск;		
		0×0002: Реверс;		
		0×0003: Толчок;		
		0×0004: Реверсивный толчок;		
		0×0005: Выбег;		
		0×0006: Замедление и останов;		
		0×0007: Быстрый останов;		
DOO 04	F	0×0008: Сброс ошибки		Α
P29.01	Единица скорости специального	Единицы этого регистра задаются в параметре РЗО.14	_	☆
	регистра обмена	0.01 % (-100.00÷100.00 %)		
	данными	0.01 ГЦ (0÷600.00 ГЦ)		
	Asimo	1 Об/мин (0÷65535 Об/мин)		
P29.02	Коммуникационное	0.01 % (-300.00÷300.00 %)	_	☆
	задание крутящего	,		
	момента			
P29.03	Коммуникационное	Единицы этого регистра можно установить	_	☆
	задание верхнего	с помощью 30.14.		
	предела частоты	Диапазон разных единиц измерения такой же, как		
		0×7001		
P29.04	Коммуникационное	Единицы этого регистра можно установить	_	☆
	задание ограни-	с помощью 30.14.		
	чения крутящего	Диапазон разных единиц измерения такой же, как		
P29.05	момента	0×7001		☆
r29.00	Ограничение электрического	0.1 % (0÷300.0 %)	_	M
	крутящего момента			
P29.06	Ограничение	0.1 % (0÷300.0 %)	_	☆
120.00	крутящего момента	0.1 % (0 000.0 %)		
	генератора			
P29.07	Значение процесса	0.01 % (100.00÷100.00 %)	_	☆
	пид			
P29.08	Значение обратной	0.0 1 % (-100.00÷100.00 %)	_	☆
	связи ПИД			
P29.09	Напряжение на	0.1 % (0÷100.0 %)	_	☆
	клемме VF			
P29.10	Внешняя неисправ-	Отображение внешней неисправности	-	☆
	ность			

Параметр	Наименование параметра	Описание								По умолчанию	Свойство
P29.11	Настойка состояния DO	Когда функция DO (пожалуйста, обратитесь к PO7.01÷PO7.10) установлена на O (без функции), ее состояние исходит из настройки выделенного регистра связи, и соответствующий бит 1 означает, что она включена. Биты этого регистра определяются следующим образом:							_	☆	
		Бин7	Бит6	Бит5	Бит4	Бит3	Бит2	Бит1	Бит0		
						ROL2	RO1	D02	D01		
		Бит15	Бит14	Бит13	Бит12	Бит11	Бит10		Бит8		
								VD02	VD01		
Группа 30: Г	Параметры Modbus										
P30.00	Тип канала связи	0: Mod 1: CAN								0	*
P30.01	Адрес привод	1÷247	,							3	*
	данных Modbus	0: 1 200 бит/с 1: 2 400 бит/с 2: 4 800 бит/с 3: 9 600 бит/с 4: 19 200 бит/с 5: 38 400 бит/с 6: 57 600 бит/с; 7: 115 200 бит/с									
P30.03	Формат данных Modbus	0: 1-8-N-1 (1 начальный бит + 8 битов информации; 1: 1-8-E-1 (1 начальный бит + 8 битов информации; 1: 1-8-E-1 (1 начальный бит + 8 битов информации + 1 контроль четности + 1 стоповый бит) 2: 1-8-0-1 (1 начальный бит + 8 битов информации + 1 проверка на нечетность + 1 стоповый бит) 3: 1-8-N-2 (1 начальный бит + 8 битов информации + 2 стоповых бита) 4: 1-8-E-2 (1 начальный бит + 8 битов информации + 1 контроль четности + 2 стоповых бита) 5: 1-8-0-2 (1 начальный бит + 8 битов информации							0	*	
P30.04	Задержка отклика Modbus	1÷20 i	MC							2 мс	*
P30.05	Превышение времени ответа Modbus	0,0÷60,0 с 0,0 — отключено Если ответ от устройства master не получен в течение этого времени, преобразователь выведет ошибку Er. 485							0,0 с	*	

Параметр	Наименование	Описание	По умолчанию	Свойство
r30.06	Количество кадров, полученных Modbus	При каждом получении кадра это значение увеличивается на 1,0 — 65535 циклов	_	•
r30.07	Количество кадров, отправляемы Modbus	При каждом отправлении кадра это значение увеличивается на 1,0 — 65,536 циклов	_	•
r30.08	Количество кадров ошибки, полученных Modbus	Каждый раз, когда принимается кадр ошибки CRC (контрольной суммы), это значение увеличивается на 1,0 — 65535 циклов. Оно может быть использовано для оценки степени помех связи	_	•
P30.09	Опция системы с конфигурацией «Подчиненный — мастер» Modbus	О: Подчиненное устройство 1: Устройство «Мастер» (широковещательные команды)	0	*
P30.10	Память подчиненного устройства, когда преобразователь является мастером	1÷9 соответствует 0x7001÷0x7009	1	À
P30.11	Данные, отправляемые основным устройством	О: Выходная частота 1: Установленная частота 2: Выходной крутящий момент 3: Установленный крутящий момент 4: Настройка ПИД 5: Обратная связь ПИД 6: Выходной ток	0	À
P30.12	Период отправки основного устрой- ства	0,010÷10,000 с В качестве основного устройства, после отправки одного кадра, следующий кадр отправляется после этой задержки	0.1c	*
P30.13	Коэффициент пропорциональ- ности получения подчиненного устройства	-10,000÷10,000 Значения подчиненных регистров 0х7001 и 0х7002 вступают в силу после прохождения через этот коэффициент масштабирования	1.00	⋨
P30.14	Единица скорости специального регистра обмена данными	0: 0,01 % 1: 0,01 Гц 2: 1 об/мин Некоторые единицы конкретных регистров обмена данными могут быть заданы этим параметром. Подробности см. в приложении А	0	क्रे
P30.15	Характеристики отклика Modbus	Если формат принимаемого кадра является регистром записи, то этот параметр можно установить для ответа центральной ЭВМ 0: Ответ центральной ЭВМ (стандартный протокол Modbus) 1: Без ответа центральной ЭВМ (не стандартный протокол Modbus)	0	☆

Таблица 5.27 – Параметры CANopen

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 31: Г	Параметры CANopen			
P31.00	Адрес канала связи CANopen	1÷127	1	⋨
P31.01	Скорость передачи данных CANopen	0: 100 k 1: 125 k 2: 250 k 3: 500 k 4: 1 M	3	A
P31.02	Дополнительное время CANopen	1÷20 мс	4 мс	☆
r31.07	Номер версии CANopen	Отображает номер версии CANopen	-	•
r31.08	Рабочее состояние CANopen	О: Состоянии инициализации 1: Разъединено 2: Подключение/подготовка 3: Остановлено 4: Работоспособное состояние 5: Предпусковой	-	•
r31.10	Количество ошибок получения CANopen	Количество кадров ошибок, полученных CANopen, не сохраняется после выключения питания	-	•
r31.11	Количество ошибок отправления CANopen	Количество кадров ошибок, отправленных CANopen, не сохраняется после выключения питания	_	•
r31.12	Количество кадров получения CANopen	Количество кадров, полученных CANopen, не сохраняется после выключения питания	_	•
r31.14	Количество кадров отправления	Количество кадров, отправленных CANopen не сохраняется после выключения питания	_	•

Таблица 5.28 — Описание функционального кода ProfiNet

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 32: (Описание функционал	ьного кода ProfiNet		
P32.00	Имя устройства	Значение параметра 1 ÷ 255, соответствует значению mtpn-1 ÷ mtpn-255 в среде программирования. При установке значения 0 адрес присваивается хостом, другие значения не отображаются. Примечание: действует после повторного включения питания преобразователя частоты.	0	幸
P32.01	IP1	Формат IP-адреса: IP1.IP2.IP3.IP4	0	☆
P32.02	IP2	Когда значение P32.01 ÷ P32.04 = 0, после включения карта ProfiNet отобразит IP-адрес, сохраненный в памяти, на дисплее устройства.	0	☆
P32.03	IP3		0	☆
P32.04	IP4	сохраненный в памяни, на диспиее устроиства. Исправить значение IP-адреса в параметрах P32.01 ÷ P32.04 можно вручную. Примечание: действует после повторного включения питания преобразователя частоты.	0	☆
P32.05	MAC1	Стандартный МАС-адрес состоит из 6 байтов,		☆
P32.06	MAC2	P32.05 ÷ P32.07 соответствует двухбайтовому		☆
P32.07	MAC3	МАС-адресу, а соответствующая последовательность МАС-адресов представляет собой М АС1Н-МАС1L-МАС2H-МАС2L-МАС3H-МАС3L (H-high 8 бит, L-младшие 8 бит). Когда P32.05 ÷ P32.07 установлен на 0 После включения карта PN запишет адрес, хранящийся в памяти. Примечание: 1. Каждый порт занимает МАС-адрес, рекомендуется не изменять биты P32.07, а модификация начинается с 10 бит. 2. Изменения МАС вступают в силу после повторного включения питания преобразователя частоты. 3. В преобразователе должен быть изменен МАС-адрес, при этом МАС-адреса всех устройств в сети не должны дублироваться (включая адреса портов). 4. Адрес занятости порта — P32.07, с младшим битом плюс 1 (Р1) и плюс 2 (Р2).		*
P32.08	Версия ПО	Отображение текущей версии ПО карты ProfiNet		⋨
P32.09	lobad счётчик	Отображение количества IOBAD		☆
P32.10	ARErr счётчик	Отображение количества отключений между платами Р, N и хостом.		ঐ
P32.11	Маска 1	Формат маски: SM1.SM2.SM3.SM4		☆
P32.12	Маска 2	Пример: Маска 1H показывает S M1, маска 1L показывает SM2 Маска 2H отображает S M3, маска 2L отображает SM4		\$

Таблица 5.29 – Параметры ПИД-регулятора

Таблица 5.	29 – Параметры	ПИД-регулятора		
Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 40: П	ИД-регулятор			
r40.00	Выходное значение ПИД	Только для чтения ед. измерения: 0,1 %	_	•
r40.01	Уставка ПИД	Только для чтения ед. измерения: 0,1 %	_	•
r40.02	Обратная связь ПИД	Только для чтения ед. измерения: 0,1 %	_	•
r40.03	Значение откло- нения ПИД	Только для чтения ед. измерения: 0,1 %	_	•
	Ускорение/ замедление 0 11	4 Р40.41 Р40.42 Р40.11 Р40.11 Р40.11 Пределы выхода НТ Кр 1 ТТ S Р40.30 Тредел дифференцирования	6 Р40.34 ы Фильтр в выхода	од ПИД -
P40.04	Уставка ПИД	Разряд единиц: Основной источник уставки ПИД (ref1) 0: Цифровая настройка 1: Al1 2: Al2 3: Al3 (IO-плата расширения) 4: Al4 (IO-плата расширения) 5: HDI 6: Промышленная сеть Разряд десяток: Дополнительный источник уставки ПИД (ref2) совпадает с разрядом единиц	00	☆
P40.05	Диапазон обратной связи	0,01÷655,35	100,00	☆
P40.06	Цифровая настройка ПИД О	0,0÷P40.05	0,0 %	☆
P40.07	Цифровая настройка ПИД 1	0,0÷P40.05	0,0 %	☆
P40.08	Цифровая настройка ПИД 2	0,0÷P40.05	0,0 %	☆
P40.09	Цифровая настройка ПИД 3	0,0÷P40.05	0,0 %	☆

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			

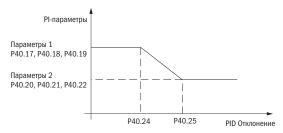
Когда источником уставки ПИД является цифровая настройка, цифровая настройка ПИД 0÷3 зависит от функции клеммы DI 43 (предустановка ПИД, вход 1) и 44 (предустановка ПИД, клемма 2):

ПИД, вход 1	ПИД, вход 2	Значение цифровой настройки ПИД (0,1%)
Выкл	Выкл	P40.06 × 100,0 % / P40.05
Выкл	Вкл	P40.07 × 100,0 % / P40.05
Вкл	Выкл	P40.08 × 100,0 % / P40.05
Вкл	Вкл	P40.09 × 100,0 % / P40.05

Например, когда Al1 используется в качестве обратной связи ПИД, если полный диапазон соответствует давлению 16,0 кг и требуется, чтобы уставка ПИД была 8,0 кг, то установите диапазон обратной связи ПИД P40.05 = 16,00. Цифровая клемма опорного сигнала ПИД выбирает до P40.06 — установите P40.06 (предустановленная настройка ПИД 0) = 8,00.

P40.10	Выбор источника	0: ref1	0	☆
	уставки (ref) ПИД	1: ref1 + ref2		
		2: ref1 -r ef2		
		3: ref1 × ref2		
		4: ref1/ref2		
		5: Min (ref1, ref2)		
		6: Max (ref1, ref2)		
		7: (ref1 + ref2)/2		
		8: Переключение ref1 и ref2		
P40.11	Источник обратной	Разряд единиц 0: Источник обратной связи ПИД 1	00	☆
	связи ПИД 1	(fdb1)		
		0: Al1		
		1: AI2		
		2: AI3 (дополнительная плата)		
		3: АІ4 (дополнительная плата)		
		4: HDI импульсный вход		
		5: Промышленная связь		
		6: Номинальный выходной ток двигателя		
		7: Номинальная выходная частота двигателя		
		8: Номинальный выходной крутящий момент		
		двигателя		
		9: Номинальная выходная частота двигателя		
		Разряд десяток: Источник обратной связи ПИД 2		
		(fdb2)		
		Совпадает с разрядом единиц		
P40.13	Выбор функции	0: fdb1	0	☆
	обратной связи ПИД	1: fdb1 + fdb2		
		2: fdb1 - fdb2		
		3: $fdb1 \times fdb2$		
		4: fdb1/fdb2		
		5: Min (fdb1, fdb2). Минимальное значение из двух		
		6: Max (fdb1, fdb2). Максимальное значение из двух		
		7: (ref1 + ref2)/2		
		8: Переключение fdb1и fdb2		

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P40.14	Направление ПИД	О: Выход ПИД положителен: когда сигнал обратной связи превышает уставку ПИД, выходная частота инвертора будет уменьшаться, чтобы сбалансировать ПИД. Например, для насоса 1: Выход ПИД отрицателен: когда сигнал обратной связи больше, чем уставка ПИД, выходная частота инвертора будет увеличиваться, чтобы сбалансировать ПИД. Например, для вентилятора	0	☆
P40.15	Верхний предел ПИД-выхода	-100,0÷100,0 %	100,0 %	☆
P40.16	Нижний предел ПИД-выхода	-100,0÷100,0 %	0,0 %	☆
P40.17	Пропорциональный коэффициент усиления КР1	0,00÷10,00 Функция применяется к пропорциональному коэффициенту усиления Р ПИД-входа Р определяет силу всего ПИД-регулятора. Показатель 100 означает, что при смещении ПИД обратной связи и при заданном значении составляет 100 %, диапазон регулировки ПИД-регулятора — это максимальная частота (игнорирование интегральной и дифференциальной функции)	5,0 %	益
P40.18	Время интегрирования ТІ1	0,01÷10,00 с Этот параметр определяет скорость работы ПИД-регулятора для осуществления интегральной регулировки по отклонению ПИД-обратной связи и уставки Когда отклонение ПИД-обратной связи и уставки составляет 100 %, интегральный регулятор работает непрерывно по истечении времени (игнорируя пропорциональный и дифференциальный коэффициент) для достижения макс. частоты (Р01.06) или макс. напряжения (Р12.21). Чем короче интегральное время, тем сильнее регулировка	1,00 с	À
P40.19	Дифференциальное время TD1	0,000÷10,000 с Этот параметр определяет силу отношения изменения при выполнении ПИД-регулятором интегральной регулировки по отклонению обратной связи ПИД и опорного сигнала Если обратная связь ПИД изменяется на 100 % в течение этого времени, то регулировка интегрального регулятора (игнорируя пропорциональный эффект и дифференциальный эффект) составляет макс. частоту (Р01.06) или макс. напряжение (Р12.21). Чем дольше время интегрирования, тем сильнее регулировка	0,000 c	龙
P40.20	Пропорциональный коэффициент усиления КР2	0,00÷200,0 %	5,0 %	☆
P40.21	Время интегриро- вания TI2	0,00÷20,00 c	1,00 c	☆

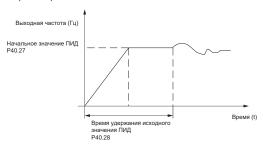

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P40.22	Дифференциальное время TD2	0,000÷0,100 c	0,000 c	\$
P40.23	Условие переключения ПИД-параметров	О: без переключения Не переключать, использовать КР1, ТI1, TD1 1: Переключение через DI Переключать с помощью клеммы DI КР1, ТI1, TD1 используются, когда нет сигнала на DI с функцией 41; КР2, ТI2, TD2 — когда сигнал подан 2: Автоматическое переключение, основанное на отклонении Абсолютное значение отклонения команды PID и обратной связи меньше, чем Р40.24, при использовании КР1, ТI1, TD1. Абсолютное значение откло- нения больше, чем Р40.25, при использовании параметров КР2, ТI2, TD2. Абсолютное значение отклонения находится между Р40.24 и Р40.25, два набора параметров линейно переходят	0	**
P40.24	Отклонение переключения параметров ПИД 1	0,0 % ÷ P40.25	20,0 %	*
P40.25	Отклонение переключения параметров ПИД 2	P40.24 ÷ 100,0 %	80,0 %	益

При некоторых применениях одного группового параметра ПИД недостаточно, в зависимости от ситуации будут приняты различные параметры ПИД.

Коды функций используются для переключения двух групп параметров ПИД. Режим настройки параметров регулятора P40.20 ÷ P40.22 аналогичен параметрам P40.17 ÷ P40.19.

Две группы ПИД-параметров могут быть переключены через клемму DI или автоматически в соответствии с отклонением ПИД.

Выбрано автоматическое переключение: когда абсолютное значение отклонения между заданным и обратной связью меньше P40.24 (отклонение переключения параметра ПИД 1), выбор параметра ПИД является группой 1. Когда абсолютное значение отклонения между заданным и обратной связью больше, чем P40.25 (отклонение переключения параметра ПИД 2), выбор параметра PID является группой 2. Когда абсолютное значение отклонения между заданным и обратной связью находится между P40.24 и P40.25, параметр ПИД представляет собой линейную интерполяцию двух групп параметров ПИД, показанных ниже.



P40.26	Порог разделения ПИД-интеграла	0,0÷100,0 %	100,0 %	⋨
P40.27	Начальное зна- чение ПИД	0,0÷100,0 %	0,0 %	A

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P40.28	Время удержания	0,00÷650,00 c	0,00 c	☆
	начального зна-			
	чения ПИД			

Эта функция действительна только тогда, когда Р40.39 = 0, который не вычисляется. ПИД-выход сбрасывается после остановки инвертора. Если Р40.28 ≠ 0, то при работе инвертора выход ПИД равен начальному значению ПИД и сохраняет время Р40.28.

P40.29	Предел отклонения ПИД	О,0÷100,0 % Выход ПИД-системы находится относительно максимального отклонения уставки. Как показано на диаграмме ниже, ПИД-регулятор перестает работать во время предела отклонения. Установите функцию правильно, чтобы настроить точность и стабильность работы системы Уставка Обратная отклонения Уставка Выходная частота	0,0 %	袁
P40.30	Дифференциальный предел ПИД	0,00÷100,00 %	1,00 %	*
P40.33	Время фильтра обратной связи ПИД	0,000÷30,000 c	0,010 c	⋨
P40.34	Время фильтра выхода ПИД	0,000÷30,000 c	0,010 c	☆
P40.35	Значение обнаружения потери обратной связи ПИД (нижний предел)	0,0 (без обнаружения) ÷ 100,0 %	0,0 %	र्दे

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P40.36	Время обнаружения потери обратной связи ПИД	0,000÷30,000 c	0,000 c	⋨
P40.37	Значение обнаружения потери обратной связи ПИД (верхний предел)	0,0÷100,0 % (без обнаружения)	100,0 %	⋨
P40.38	Время обнаружения потери обратной связи ПИД (верхний предел)	0,000÷30,000 c	0,000 c	☆
P40.39	Функционирование ПИД при останове	0 — ПИД не функционирует при останове 1 — ПИД функционирует при останове	0	☆
P40.40	Команда ПИД для времени ускорения и замедления	0,0÷6000,0 c	0,0 c	⋨
P40.41	Выбор сдвига ПИД	0: Цифровая настройка 1: Al1 2: Al2 3: Al3 (дополнительная плата)	0	के
P40.42	Цифровая настройка сдвига ПИД	-100,0÷100,0 %	0,0 %	⋨
P40.43	Цифровая настройка компен- сации ПИД	0: Прямое обнаружение 1: Запуск обнаружения, когда абсолютное значение Р40.03 меньше Р40.44	0	⋨
P40.44	Отклонение обратной связи ПИД	0,00%÷100,0 %	10,00	\$
P40.45	Задержка компен- сации ПИД	0,000s÷60.000s	0	\$

Таблица 5.30 – Режим сна

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 41: F	Режим сна		•	
P41.00	Источник режима сна/пробуждения	Разряд единиц: Выбор режима сна 0: Без функции сна 1: Сон по частоте 2: Аl1-сон (Аl1 как обратная связь давления) 3: Al2-сон (Al2 как обратная связь давления) 4: Al3-сон (Al3 как обратная связь давления) 3: Al4-сон (Al4 как обратная связь давления) Разряд десяток: Выбор режима пробуждения 0: Пробуждение по частоте 1: Al1-пробуждение (Al1 как обратная связь давления) 2: Al2-пробуждение (Al2 как обратная связь давления)	010	本

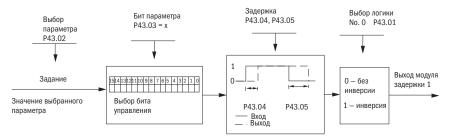
Параметр	Наименование	Описание	По умолчанию	Свойство
араметр -	параметра	З: АІЗ-пробуждение (АІЗ как обратная связь давления) 4: АІ4-пробуждение (АІ4 как обратная связь давления) Разряд сотен: Выбор направления сна/пробуждения 0: Положительное направление источник сна (АІ1 ÷ АІ4) > Р41.03, инвертор будет спать Источник пробуждения (АІ1 ÷ АІ4) < Р41.04, инвертор будет бодрствовать 1: Обратное направление Источник сна (АІ1 ÷ АІ4) < Р41.03, инвертор спит источник пробуждения (АІ1 ÷ АІ4) > Р41.04, инвертор пробуждения (АІ1 ÷ АІ4) > Р41.04, инвертор пробуждения совпадают, пожалуйста, обратите внимание на соотношение размеров Р41.03 и Р41.04. Если установка параметра чрезмерна, то при выборе	по умолчанию	СВОИСТВ
		условия пробуждения, даже если установлено условие сна, состояние сна не может быть введено, и при использовании этого режима требуется особое внимание		
P41.01	Значение режима сна по частоте	0,0÷600 Гц При частоте ниже этого значения инвертор перейдет в режим сна	0,00 Гц	\$
P41.02	Значение пробуждения по частоте	0,0÷600,00 При частоте выше этого значения преобразователь вернется в работу	0,00 Гц	⋨

При выборе частоты сна и частоты пробуждения необходимо соблюдать условие P41.01 < P41.02. Когда источник частоты — это ПИД и пробуждение происходит по частоте, необходимо настроить параметр P40.39 = 1.

P41.03	Порог режима сна	0÷100,0 %	0,0 %	☆
	по давлению			
P41.04	Порог пробуждения	0,0÷100,0 %	0,0 %	☆
	по давлению			
P41.05	Время задержки сна	0,0÷6000,0 c	0,0 c	☆
P41.06	Время задержки пробуждения	0,0÷6000,0 c	0,0 с	☆
P41.07	Время торможения сна	Значение настройки определяется P03.16 P03.16 = 2; 0,00÷600,00 c P03.16 = 1; 0,0÷6 000,0 c P03.16 = 0; 0÷60 000 с P41.07 установлен на 0, торможение выбегом	0,00 с	対

Таблица 5.31 – Параметры простого ПЛК

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 42: Г	Тростой ПЛК			
r42.00	Текущий режим работы ПЛК	Только чтение	-	•
r42.01	Оставшееся время текущей работы ПЛК	Только чтение	-	•
r42.02	Время циклов ПЛК	Только чтение	_	•
P42.03	Простой режим работы ПЛК	Разряд единиц: 0: Один цикл, после останов 1: Один цикл, после удержания последней скорости 2: Повторный цикл 3: Сброс ПЛК при остановке одного цикла Разряд десяток: 0: Выключение питания без сохранения 1: Выключение питания с сохранением Разряд сотен: 0: Остановка без сохранения 1: Остановка без сохранения 1: Остановка с сохранением 0: Перезапуск с первой ступени; остановка во время работы (вызвана командой «Стоп», неисправность или потеря питания), запуск с первой ступени после перезапуска 1: Продолжает работать с частоты остановки; остановки и неисправность), инвертор автоматически запишет время работы, войдет в стадию после перезапуска и сохранит оставшуюся работу на заданной частоте	003	青
P42.04	Количество циклов ПЛК	1÷60 000	1	☆
P42.05	Время выполнения шага 1 ПЛК	0,0÷6553,5, единица зависит от P42.21 Примечание: время работы не включает время ускорения и замедления	0,0	益
P42.06	Время выполнения шага 2 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	☆
P42.07	Время выполнения шага 3 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	☆
P42.08	Время выполнения шага 4 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	⋨
P42.09	Время выполнения шага 5 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	☆
P42.10	Время выполнения шага 6 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	⋨
P42.11	Время выполнения шага 7 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	⋨
P42.12	Время выполнения шага 8 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	☆


Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P42.13	Время выполнения шага 9 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	☆
P42.14	Время выполнения шага 10 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	☆
P42.15	Время выполнения шага 11 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	4
P42.16	Время выполнения шага 12 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0.0	A
P42.17	Время выполнения шага 13 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	☆
P42.18	Время выполнения шага 14 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	☆
P42.19	Время выполнения шага 15 ПЛК	0,0÷6553,5, единица зависит от Р42.21	0,0	☆
P42.20	Время выполнения шага 16 ПЛК	0.0÷6553,5, единица зависит от Р42.21	0,0	☆
P42.21	Единица измерения время работы ПЛК	0: Секунда 1: Минута 2: Час	0	⋨
P42.22	Селектор времени ускорения/замед- ления, шаг 1-4 ПЛК	Разряд единиц: Селектор времени ускорения/ замедления, шаг 1 Разрядок десяток: Селектор времени ускорения/ замедления, шаг 2 Разряд сотен: Селектор времени ускорения/ замедления, шаг 3 Разряд тысячных: Селектор времени ускорения/ замедления, шаг 4 0: Время ускорения/замедления 1 1: Время ускорения/замедления 2 2: Время ускорения/замедления 3 3: Время ускорения/замедления 4	0000	☆
P42.23	Селектор времени ускорения/замед- ления, шаг 5-8 ПЛК	Разряд единиц: Время ускорения/замедления 5 Разрядок десяток: Время ускорения/замедления 6 Разряд сотен: Время ускорения/замедления 7 Разряд тысячных: Время ускорения/замедления 8 0: Время ускорения/замедления 1 1: Время ускорения/замедления 2 2: Время ускорения/замедления 3 3: Время ускорения/замедления 4	0000	**
P42.24	Селектор времени ускорения/замед- ления, шаг 9-12 ПЛК	Разряд единиц: Время ускорения/замедления 9 Разрядок десяток: Время ускорения/ замедления 10 Разряд сотен: Время ускорения/замедления 11 Разряд тысячных: Время ускорения/ замедления 12 0: Время ускорения/замедления 1 1: Время ускорения/замедления 2 2: Время ускорения/замедления 3 3: Время ускорения/замедления 4	0000	录

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P42.25	Селектор времени ускорения/замед- ления, шаг 13-16 ПЛК	Разряд единиц: Время ускорения/замедления 13 Разрядок десяток: Время ускорения/ замедления 14 Разряд сотен: Время ускорения/замедления 15 Разряд тысячных: Время ускорения/ замедления 16 0: Время ускорения/замедления 1 1: Время ускорения/замедления 2 2: Время ускорения/замедления 3 3: Время ускорения/замедления 4	0000	录
P42.26	Время торможения остановки ПЛК	0,01÷60 000 с Значение настройки РОЗ.16 РОЗ.16 = 2; 0,00÷600,00 с РОЗ.16 = 1; 0,0÷6 000,0 с РОЗ.16 = 0; 0 ÷60 000 с	20,00 c	न्ने

Таблица 5.32 - Модули задержек

Параметр	Наименование	Описание	По умолчанию	Свойство
	параметра			
Группа 43: М	Лодули задержек			
r43.00	Состояние выхода модуля	Используется для просмотра текущего	-	•
	задержки	состояния выхода модуля задержки.		
		Используется битовое определение,		
		бит 0 ÷ бит 3 соответственно указывает		
		на состояние выхода модулей задержки		
		1÷4. 0 — выключен, 1 — включен		

Всего имеется 4 модуля задержки. Модуль задержки может собирать состояние 0÷15 бит всех параметров, которые можно просмотреть в таблице кодов функций, и, наконец, выводить состояние блока задержки после обработки задержки и выбора логики. Может использоваться для DI/DO, задержки выхода компаратора / логического блока и других функций, а также в качестве виртуального реле.

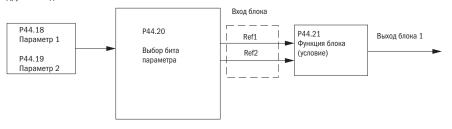

На рисунке показана структурная схема модуля задержки 1, модуля задержки 2-4 и так далее. Модули задержки можно использовать для обработки задержки DI DO также можно комбинировать с блоками компаратора и логическими блоками для более сложных применений.

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P43.01	Логика блока задержки 1-6	0000÷1111 В Бит 0 ÷ бит 3 соответствует модулям задержки 1÷4, которые используются для указания того, является ли выход блока задержки инвертированным.	0	☆
P43.02	Выбор параметра входа модуля задержки 1	00,00÷98,99 (индекс кода параметра)	00,00	☆
P43.03	Выбор входного бита модуля задержки 1	0÷15	0	☆
P43.04	Время задержки включения модуля задержки 1	0,0÷3 000,0 c	0,0 с	☆
P43.05	Время задержки выключения модуля задержки 1	0,0÷3 000,0 c	0,0 с	☆
P43.06	Выбор параметра входа модуля задержки 2	00,00÷98,99 (индекс кода параметра)	00,00	☆
P43.07	Выбор входного бита модуля задержки 2	0÷15	0	☆
P43.08	Время задержки включения модуля задержки 2	0,0÷3 000,0 c	0,0 с	☆
P43.09	Время задержки выключения модуля задержки 2	0,0÷3 000,0 c	0,0 с	☆
P43.10	Выбор параметра входа модуля задержки 3	00,00÷98,99 (индекс кода параметра)	00,00	☆
P43.11	Выбор входного бита модуля задержки 3	0÷15	0	☆
P43.12	Время задержки включения модуля задержки 3	0,0÷3 000,0 c	0,0 c	☆
P43.13	Время задержки выключения модуля задержки 3	0,0÷3 000,0 c	0,0 с	☆
P43.14	Выбор параметра входа модуля задержки 4	00,00÷98,99 (индекс кода параметра)	00,00	☆
P43.15	Выбор входного бита модуля задержки 4	0÷15	0	☆
P43.16	Время задержки включения модуля задержки 4	0,0÷3 000,0 c	0,0 с	☆
P43.17	Время задержки выключения модуля задержки 4	0,0÷3 000,0 c	0,0 с	☆

Таблица 5.33 – Компараторы и логическое устройство / контроллер

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 44: Н	Компараторы и логическ	ое устройство / контроллер		'
r44.00	Выход компаратора 1÷4	Бит 0÷3 обозначает выход логического устройства 1÷4	-	•
r44.01	Выход логического блока 1÷4	Бит 0÷3 обозначает выход логического блока 1÷4	-	•
P44.02	Параметр входа компаратора 1	00,00÷98,99 (индекс кода функции)	00,00	☆
P44.03	Порог компаратора 1	00,00÷98,99 (индекс кода функции)	00,00	\$
P44.04	Условие компаратора 1	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	☆
P44.05	Ширина гистере- зиса компаратора 1	0÷65 535	0	⋨

⁴ группы встроенного компаратора. Эта функция может быть использована для любых двух параметров. Выбрав условие сравнения, можно сравнить два параметра. При соблюдении условии выход компаратора будет 1, а при несоблюдении выход будет 0. Выход переменной селектора может выступать в качестве DI, VDI, входа виртуальных реле и DO, выхода реле и т. д.



P44.06	Параметр входа компаратора 2	00,00÷98,99 (индекс кода функции)	00,00	⋨
P44.07	Порог компаратора 2	00,00÷98,99 (индекс кода функции)	00,00	⋨
P44.08	Условие компаратора 2	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	*
P44.09	Ширина гистере- зиса компаратора 2	0÷65 535	0	*
P44.10	Параметр входа компаратора 3	00,00÷98,99 (индекс кода функции)	00,00	*
P44.11	Порог компаратора 3	00,00÷98Ю99 (индекс кода функции)	00,00	*
P44.12	Условие компаратора 3	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	☆

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P44.13	Ширина гистере- зиса компаратора 3	0÷65 535	0	⋨
P44.14	Параметр входа компаратора 4	00.00÷98,99 (индекс кода функции)	00,00	⋨
P44.15	Порог компаратора 4	00,00÷98,99 (индекс кода функции)	00,00	☆
P44.16	Условие компаратора 4	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	☆
P44.17	Ширина гистере- зиса компаратора 4	0÷65 535	0	⋨
P44.18	Параметр 1 логического блока 1	00,00÷98,99 (индекс кода функции)	00,00	☆
P44.19	Параметр 2 логического блока 1	00,00÷98,99 (индекс кода функции)	00,00	☆
P44.20	Источник входа логического блока 1	Разряд ед.: Выбор бита параметра 1 0÷F (представляет 0÷15), PP44.18 соответствует 0÷15 бит Разряд десяток: Выбор бита параметра 2 0÷F (представляет 0÷15), PP44.19 соответствует 0÷15 бит	0	対
P44.21	Функция логического блока 1	0: Без функции 1: И 2: ИЛИ 3: НЕ И 4: НЕ ИЛИ 5: Выполнять операцию, исключающую ИЛИ 6: Ref = 1 эффективная; Ref2 = 1 неэффективная 7: Ref1 вверх эффективна, Ref2 вверх неэффективна 8: Ref1 вверх и обратный сигнал 9: Ref1 вверх и выход, ширина импульса 200 мс	0	☆

⁴ встроенных логических блока K750. Логический блок может выполнять логическую обработку любых 0÷15 битов любого параметра 1 и любых из 0÷15 битов любого параметра 2. При выполнении условия выход блока будет 1. Выход логического блока может использоваться в качестве DI, VDI, блока задержки и других входов, DO, реле и других выходов.

P44.22	Параметр 1 порога	00,00÷98,99 (индекс кода функции)	00,00	☆
	логического блока 2			
P44.23	Параметр 2 логиче- ского блока 2	00,00÷98,99 (индекс кода функции)	00,00	☆

Параметр	Наименование параметра	Описание	По умолчанию	Свойство	
P44.24	Источник входа логического блока 2	Разряд ед.: Выбор бита параметра 1 0+F (представляет 0+15), P44.22 соответствует 0+15 бит Разряд десяток: Выбор бита параметра 2 0+F (представляет 0+15), P44.23 соответствует 0+15 бит	0	À	
P44.25	Функция логиче- ского блока 2	1: И 2: ИЛИ 3: НЕ И 4: НЕ ИЛИ 5: Выполнять операцию, исключающую ИЛИ 6: Ref = 1 эффективная; Ref2 = 1 неэффективная 7: Ref1 вверх эффективна, Ref2 вверх неэффективна 8: Ref1 вверх и обратный сигнал 9: Ref1 вверх и выход, ширина импульса 200 мс	0	录	
P44.26			00,00	☆	
P44.27	Параметр 2 логиче- ского блока 3	00,00÷98,99 (индекс кода функции)	0	☆	
P44.28	Источник входа логического блока 3	Разряд ед.: Выбор бита параметра 1 0+F (представляет 0+15), P44.26 соответствует 0+15 бит Разряд десяток: Выбор бита параметра 2 0+F (представляет 0-15), P44.27 соответствует 0+15 бит	0	\$	
P44.29	Функция логиче- ского блока З	1: И 2: ИЛИ 3: НЕ И 4: НЕ ИЛИ 5: Выполнять операцию, исключающую ИЛИ 6: Ref = 1 эффективная; Ref2 = 1 неэффективная 7: Ref1 вверх эффективна, Ref2 вверх неэффективна 8: Ref1 вверх и обратный сигнал 9: Ref1 вверх и выход, ширина импульса 200 мс	0	\$	
P44.30	Параметр 1 логиче- ского блока 4	00,00÷98,99 (индекс кода функции)	00,00	⋨	
P44.31	Параметр 2 логиче- ского блока 4	00,00÷98,99 (индекс кода функции)	00,00	\$	
P44.32			0	幸	

Параметр	Наименование параметра	Описание	По умолчанию	Свойство	
P44.33	Функция логиче- ского блока 4	1: И 2: ИЛИ 3: НЕ И 4: НЕ ИЛИ 5: Выполнять операцию, исключающую ИЛИ 6: Ref = 1 эффективная; Ref2 = 1 неэффективная 7: Ref1 вверх эффективна, Ref2 вверх неэффективна 8: Ref1 вверх и обратный сигнал 9: Ref1 вверх и выход, ширина импульса 200 мс	0	**	
P44.34	Постоянная настройка 1	0÷65 535	0	☆	
P44.35	Постоянная настройка 2	0÷65 535	0	☆	
P44.36	Постоянная настройка 3	0÷65 535	0	☆	
P44.37	Постоянная настройка 4	-9 999÷9 999	0	☆	
P44.38	Постоянная настройка 1 в соответствии с определением бита	0÷65 535 (определить как бит)	0	*	
P44.39	Постоянная настройка 2 в соответствии с определением бита	0÷65 535 (определить как бит)	0	À	
P44.40	Постоянная настройка 3 в соответствии с определением бита	0÷65 535 (определить как бит)	0	*	
P44.41	Постоянная настройка 4 в соответствии с определением бита	0÷65 535(определить как бит)	0	À	

Постоянная настройка для опорного значения компаратора или входа логического блока

Таблица 5.34 — Многофункциональные счетчики

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 45: І	Многофункциональные	счетчики		
r45.00	Значение входа счетчика 1	Значение счетчика до арифметического устройства, то есть количество импульсов, полученных счетчиком 1 32-битные данные только для чтения	_	•
r45.02	Значение счета счетчика 1	Значение счета после арифметического устройства 32-битные данные только для чтения	_	•

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
P45.04	Установленное значение счетчика 1	1 до 4294967295, когда значение счетчика 1 (после арифметического устройства) достигает этого значения, то DO с функцией 21 «Достижение значения счетчика 1» замыкается	1000	Ā
P45.06	Максимальное значение счетчика 1	1 до 4294967295, устанавливает максимальное значение счетчика 1 (после арифметического устройства)	4294967295	⋨
P45.08	Счетчик 1 Числитель арифметического устройства	1÷65 535 Значение счета счетчика 1 = значение входа счетчика 1 × (Числитель арифметического устройства)	1	⋨
P45.09	Счетчик 1 Знаменатель арифметического устройства	1+65 535	1	\$

K750 имеет 2 встроенных счетчика: счетчик 1-32-битный многофункциональный счетчик с арифметическим устройством; счетчик 2-16-битный обычный счетчик без функции арифметического устройства. Теперь возьмем счетчик 1 в качестве примера, чтобы кратко объяснить его функцию и использование.

Счетчик 1 принимает импульсный сигнал через цифровой вход DI с функцией «Вход счетчика 1», и импульсный сигнал используется для подсчета импульсов счетчика 1 после прохождения через электронный редуктор. Когда значение счетчика достигает заданного значения (Р45.04), тогда DO с функцией 21 «Достижение значения счетчика 1» замыкается. Когда значение счетчика достигает максимального значения (Р45.06), выберите, следует ли остановить подсчет или сбросить счет в соответствии со значением Р45.13.

Счетчик также может быть сброшен с помощью клеммы DI. Когда функцией DI является «Сброс счетчика 1» и на вход подан сигнал, счетчик 1 сбрасывается.

Например: P45.04 = 3, P45.08 = 3, P45.09 = 1, функция счетчика 1 как показано ниже.

Параметр	Наименование параметра	Описание	По умолчанию	Свойство	
P45.13	Управление счетчиком 1	Разряд единиц: Способ подсчета 0: Остановка подсчета после подсчета максимального значения 1: Сброс после подсчета максимального значения, пересчет от 0 Разряд десяток: Действие после того, как счетчик достигнет заданного значения 0: Работа 1: Выбег 2: Линейный останов 3: Аварийный останов Разряд сотен: Опция сохранения при выключении питания 0: Не сохраняйте значение счетчика при выключенном питании 1: Сохраните значение счетчика при выключенном питании	001		
P45.14	Управление счетчиком 2	Разряд единиц: Способ подсчета О: Остановка подсчета после подсчета максимального значения 1: Сброс после подсчета максимального значения, пересчет от О Разряд десяток: Действие после того, как счетчик достигнет заданного значения О: Продолжение до пуска 1: Свободный останов 2: Линейный останов 3: Аварийный останов Разряд сотен: Опция сохранения при выключении питания О: Не сохраняйте значение счетчика при выключенном питании 1: Сохраните значение счетчика при выключенном питании	100	À	
P45.15	Источник выходного сигнала для обнаружения разрыва материала	0: Значение счетчика 1 1: Значение счетчика 2	1	☆	
P45.16	Начальная частота обнаружения раз- рыва материала	0÷50,00Гц Когда рабочая частота превышает установленное значение, начинается обнаружение нехватки материала	10.00	⋨	
P45.17	Время обнаружения разрыва материала С+60.000с Если значение счетчика не изменяется в течение заданного времени, возникает ошибка отсутствия материала		0	#	

Параметр		енование	Описание		По умолчанию	Свойство
	парам	•				
Действие пе	реполне	ния счета 1/2:	когда счетчик выше максимальног	о значения.		
Максима значения		0,1,2,5	3_4_5_6	0,1,2,3,4	0,1	2 3 4
Импульсный	вход					
			Остановка	Продо	лжение после пере	полнения

Таблица 5.35 – Пожарный режим

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 58: П	ожарный режим			
Функция DI:	57 входной сигнал пожа	ара		
Функция DO:	45 работа в пожарном	режиме		
P58.00	Пожарный режим	О: Отключен Пожарный режим отключен, инвертор работает в обычном режиме. Без возможности включения пожарного режима. 1: Пожарный режим 1 В случае пожара все обнаруженные неисправности игнорируются, инвертор будет работать непрерывно, пока не будет поврежден. 2: Пожарный режим 2 Обнаружение и защита неисправностей ОС (превышения тока), ОV (перенапряжение),	0	. प्रे
P58.01	Рабочая частота в пожарном режиме	Выставить рабочую частоту в пожарном режиме.	50.00 Гц	☆
r58.02	Состояние гарантии на преобразователь частоты при работе в пожарном режиме	Когда время непрерывной работы в пожарном режиме превысит значение P58.04, флаг в этом параметре установится в значение 1, тогда преобразователь частоты выйдет из гарантийных условий. На экране отобразиться A.FirE	0	•
P58.03	Источник задания частоты в режиме пожар	0: Рабочая частота пожарного режима выставляется в P58.01. 1: Частота работы в пожарном режиме задаётся в соответствии с настройками параметров P01.00÷P01.05.	0	र्द्ध
P58.04	Время работы в пожарном режиме до выхода из гарантийного срока преобразователя	Если время непрерывной работы в пожарном режиме превышает это значение, то в параметре P58.02 будет установлено значение «1», тогда преобразователь частоты выйдет из гарантийных условий. На пульте преобразователя будет отображается А.FirE. Установите этот параметр на 0, чтобы убрать отметку об отсутствии гарантии.	300 c	☆

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
r58.05	Статус пожарного режима	Когда P58.00≠0 и цифровой вход DI настроенный на сигнал пожар (функция 57), активирован, то значение данного параметра будет 1. Используется, чтобы указать, работает ли преобразователь в настоящее время в пожарном режиме.	0	•

Таблица 5.36 - Параметры двигателя 2

Параметр	Наименование параметра	Описание	По умолчанию	Свойство
Группа 60: 0	сновные параметры дв	игателя 2		
P60.00	Режим управления	Совпадает с РОО.О4	0	*
P60.01	Верхний предел частоты	Совпадает с РО1.07	0	*
P60.02	Цифровая настройка верхнего предела частоты	Нижний предел (Р01.09) ÷ максимальная частота (Р01.06)	50,00 Гц	#
P60.04	Опция времени ускорения и замед- ления	О: Совпадает с двигателем 1 1: Время ускорения и замедления 3 При выборе 1 двигатель 2 может преобразовать между временем ускорения и замедления 3 и 4 с помощью функционального кода клеммы DI 55 или переключить выходной частотой, сравнимой с P60.05 и P60.06	0	*
P60.06	Переключение частоты времени замедления 2	0,00 Гц ÷ максимальная частота (Р01.06)	0,00 Гц	益

Группа 61: Параметр двигателя 2

61.XX параметр Р11.xx совпадает с двигателем 1

Группа 62: Параметр скалярного управления двигателем 2

62.ХХ совпадает с двигателем 1, скалярное управление Р12.хх

Группа 63: Параметр векторного управления двигателя 2

63.ХХ совпадает с двигателем 2, векторное управление Р13.хх

Глава 6 Диагностика неисправностей и их решение

6.1 Неисправности и диагностика

При возникновении неисправности инвертор будет действовать в соответствии с атрибутом неисправности. При более серьезных неисправностях инвертор будет непосредственно блокировать выход; при общих неисправностях он может быть настроен на остановку или продолжение работы в соответствии с запланированным режимом остановки. После выхода инвертора из строя срабатывают контакты реле неисправности, и код неисправности отображается на индикаторной панели. Прежде чем обратиться в сервисный центр, пользователи могут выполнить самостоятельную проверку в соответствии с советами в этом разделе, проанализировать причину неисправности и найти решение.

Таблица 6.1 — Описание кодов ошибок

Наименование ошибки	Код ошибки	Отображение	Возможные причины	Решения
Защита инверторного блока (короткое замыкание)	1	Er.SC	1: Старение изоляции двигателя 2: Повреждение кабеля или короткое замыкание на землю 3: Расстояние между двигателем и инвертором слишком велико 4: Повреждение выходного транзистора 5: Внутренняя проводка инвертора ослаблена или оборудование повреждено 6: Короткое замыкание тормоз- ного транзистора	1: Проверьте сопротивление изоляции двигателя. Если оно включено, замените двигатель 2: Проверьте кабель питания двигателя 3: Установите реактор или выходной фильтр 4: Обратитесь в сервис 5: Обратитесь в сервис 6. Проверьте, не поврежден ли тормозной резистор и исправна ли проводка
Превышение тока во время ускорения	2	Er.OC1	1: Короткое замыкание 2: Автонастройка двигателя не производится 3: Время замедления слишком мало 4: Напряжение слишком низкое 5: Во время замедления добавляется внезапная нагрузка 6: Тормозной блок и тормозной резистор не установлены	1: Устраните внешние неисправности 2: Выполните автонастройку двигателя 3: Увеличьте время замедления 4: Отрегулируйте напряжение до нормального диапазона 5: Снимите дополнительную нагрузку 6: Установите тормозной блок и тормозной резистор

Наименование ошибки	Код ошибки	Отображение	Возможные причины	Решения
Превышение тока во время замедления	3	Er.OC2	1: Короткое замыкание 2: Автонастройка двигателя не производится 3: Время замедления слишком мало 4: Напряжение слишком низкое 5: Во время замедления добавля- ется внезапная нагрузка 6: Тормозной блок и тормозной резистор не установлены	1: Устраните внешние неисправности 2: Выполните автонастройку двигателя 3: Увеличьте время замедления 4: Отрегулируйте напряжение до нормального диапазона 5: Снимите дополнительную нагрузку 6: Установите тормозной блок и тормозной резистор
Превышение тока при посто- янной скорости	4	Er.OC3	1: Короткое замыкание 2: Автонастройка двигателя не производится 3: Напряжение слишком низкое 4: Во время работы добавляется внезапная нагрузка 5: Модель частотного преобразователя имеет слишком малый класс мощности	1: Устраните внешние неисправности 2: Выполните автонастройку двигателя 3: Отрегулируйте напряжение до нормального диапазона 4: Снимите дополнительную нагрузку 5: Выберите частотный преобразователь более высокого класса
Перенапря- жение во время ускорения	5	Er.OU1	1: Входное напряжение слишком высокое 2: Импульсное напряжение во входном источнике питания 3: Существует внешняя сила, приводящая двигатель в движение, или нагрузка тормозного типа слишком велика 4: Время разгона слишком мало 5: Двигатель закорочен на землю	1: Напряжение питания необходимо снизить до нормального диапазона 2: Установите реактор постоянного тока 3: Отмените внешнее усилие тягового двигателя или установите тормозной блок 4: Увеличьте время разгона 5: Устраните часть короткого замыкания на землю
Перенапря- жение во время замедления	6	Er.OU2	1: Входное напряжение слишком высокое 2: Импульсное напряжение во входном источнике питания 3: Существует внешняя сила, приводящая двигатель в движение, или высокая инерция нагрузки 4: Время замедления слишком мало 5: Двигатель закорочен на землю	1: Подключите преобразователь к сети с нормальным напряжениег 2: Установите реактора постоянного тока 3: Отмените внешнее усилие тягового двигателя или установите тормозной блок 4: Увеличьте время замедления 5: Устраните короткое замыкание
Перенапря- жение при постоянной скорости	7	Er.OU3	1: Входное напряжение слишком высокое 2: Импульсное напряжение во входном источнике питания 3: Существует внешняя сила, приводящая двигатель в движение, или нагрузка тормозного типа слишком велика 4: Время ускорения и замедления слишком мало 5: Двигатель закорочен на землю	1: Подключите преобразователь к сети с нормальным напряжениег 2: Установите реактор постоянного тока 3: Отмените внешнее усилие тягового двигателя или установите тормозной блок 4: Увеличьте время ускорения и замедления 5: Устраните короткое замыкание

Наименование ошибки	Код ошибки	Отображение	Возможные причины	Решения
Низкое напря- жение	8	Er.Lv1	1: Сбой питания или потеря входной фазы 2: Входное напряжение преобразователей частоты находится за пределами допустимого диапазона 3: Отключение питания во время работы 4: Внутренняя проводка инвертора ослаблена или преобразователь неисправен	1: Проверьте входное питание, затяжку контактов, автоматический выключатель перед преобразователем и контактор 2: Отрегулируйте напряжение до нормального диапазона 3: Выключите питание после остановки инвертора 4: Обратитесь в сервис
Неисправность шунтирующего реле ЦПТ	9	Er.Lv2	1: Мгновенная просадка напряжения на входе 2: Входное напряжение преобразователей частоты находится за пределами допустимого диапазона 3: Отключение питания во время работы 4: Внутренняя проводка инвертора ослаблена или неисправно оборудование	1: Проверьте входное питание, затяжку контактов, автоматический выключатель перед преобразователем и контактор 2: Отрегулируйте напряжение до нормального диапазона 3: Выключите питание после остановки инвертора 4: Обратитесь в сервис 5: Для нестабильного источника питания, если требования к производительности низкие, попробуйте включить функцию отключения пониженного напряжения (Р23.00)
Перегрузка пре- образователя частоты	10	Er.oL	1: Нагрузка слишком велика или двигатель заблокирован 2: Большое время ускорения или торможения инерционной нагрузки слишком мало 3: Неправильные настройки скалярного напряжения 4: Преобразователь частоты слишком малой мощности 5: Перегрузка при работе на низкой скорости	1: Уменьшите нагрузку и проверьте двигатель и механические условия 2: Увеличьте время разгона и замедления 3: Отрегулируйте усиление крутящего момента или кривую U/F 4: Выберите преобразователь с большей мощностью 5: Выполните самообучение двигателя в холодном состоянии и уменьшите несущую частоту на низкой скорости
Перегрузка двигателя	11	Er.oL1	1: Нагрузка слишком велика или двигатель заблокирован 2: Большое время ускорения и торможения инерционной нагрузки слишком мало 3: Когда направление/частота контролируются, кривая увеличения крутящего момента или напряжения/частоты не подходит 4: Мощность преобразователя слишком мала 5: Перегрузка при работе на низкой скорости 6: Неправильная настройка параметров двигателя и параметров защиты двигателя	1: Уменьшите нагрузку и проверьте двигатель и механические условия. Правильно установите параметры двигателя и параметры защиты двигателя 2: Увеличьте время разгона и замедления 3: Отрегулируйте усиление крутящего момента или кривую U/F 4: Выберите преобразователь с большей мощностью 5: Выполните самообучение двигателя в холодном состоянии и уменьшите несущую частоту на низкой скорости 6: Проверьте настройки соответствующих параметров

Наименование ошибки	Код ошибки	Отображение	Возможные причины	Решения
Потеря входной фазы	12	EriLP	1: Плохое входное напряжение 2: Силовая плата неисправна 3: Плата защиты от импульсных перенапряжений неисправна 4: Неисправна плата управления или SMPS	1: Устраните внешние неисправности 2: Обратитесь за технической поддержкой 3: Обратитесь за технической поддержкой 4: Обратитесь за технической поддержкой
Потеря выходной фазы	13	Er.oLP	1: Неисправен кабель, соединяющий преобразователь частоты и двигатель 2: Трехфазные выходы преобразователя частоты несбалансированы при работающем двигателе 3: Плата привода неисправна 4: Модуль IGBT поврежден	1: Устраните внешние неисправности 2: Проверьте обмотки двигателя 3: Обратитесь за технической поддержкой 4: Обратитесь за технической поддержкой
Перегрев модуля IGBT	14	Er.oH	1: Температура окружающей среды слишком высока 2: Воздушный фильтр загрязнен 3: Вентилятор поврежден 4: Терморезистор модуля IGBT поврежден 5: Модуль IGBT инвертора поврежден	1: Понизьте температуру окружающей среды 2: Очистите воздушный фильтр 3: Замените поврежденный вентилятор 4: Замените поврежденный терморезистор 5: Замените модуль инвертора
Перегрев двигателя	16	Er.oH3	1: Проводка датчика температуры неисправна 2: Температура двигателя слишком высока 3: Датчик температуры двигателя обнаруживает, что температура превышает установленный порог	1: Проверьте проводку датчика температуры 2: Отрегулируйте несущую частоту, улучшите охлаждение двигателя, уменьшите нагрузку и выберите двигатель с более высокой мощностью 3: Проверьте, является ли установленный порог разумным
Ошибка токо- ограничения волной	17	Er.CbC	1: Нагрузка слишком большая или заторможенный ротор 2: Модель частотного преобра- зователя имеет слишком малый класс мощности	1: Уменьшите нагрузку и проверьте двигатель и механическое состояние 2: Выберите частотный преобразователь более высокого
Короткое замыкание на землю	18	Er.GF	1: Короткое замыкание в двигателе на корпус или старение изоляции 2: Кабель поврежден и контакт, короткое замыкание 3: Собственная емкость клеммы ф и кабеля двигателя больше кабеля двигателя 4: Неисправное оборудование	1: Проверьте сопротивление изоляции двигателя 2: Проверьте кабель питания двигателя, чтобы устранить точку неисправности 3: Уменьшите несущую частоту, установите выходной реактор 4: Обратитесь за технической поддержкой

			I_	I -
Наименование ошибки	Код ошибки	Отображение	Возможные причины	Решения
Ошибка измерения температуры модуля	20	Er.tCK	1: Линия измерения температуры неисправна 2: Плата преобразователя неисправна 3: Основная плата управления неисправна 4: Температура окружающей среды слишком низкая	1: Проверьте проводку термистора 2: Обратитесь за технической поддержкой 3: Обратитесь за технической поддержкой 4: Устраните внешние причины
Ошибка изме- рения тока	21	Er.CUr	1: Датчик Холла неисправен 2: Плата преобразователя неисправна 3: Основная плата управления неисправна	1: Замените неисправный датчик Холла 2: Замените неисправную плату привода 3: Обратитесь за технической поддержкой
Обрыв энкодера	22	Er.PGL	Двигатель заблокирован Неправильная настройка энкодера З. Энкодер в обрыве	1: Проверьте двигатель и механическое состояние 2: Установите правильные параметры для энкодера 3: Проверьте соединительную линию энкодера
Превышение скорости двигателя	25	Er.oS	1: Параметры энкодера заданы неверно. 2: Автонастройка двигателя не производится 3: Параметры обнаружения превышения скорости заданы неправильно	1: Правильно установите пара- метры энкодера 2: Выполните автоматическую настройку двигателя 3: Установите параметр обна- ружения превышения скорости правильно, исходя из реальной ситуации.
Очень большое отклонение скорости	26	Er.DEV	1: Параметры энкодера заданы неверно 2: Автонастройка двигателя не производится 3: Параметры обнаружения превышения скорости заданы неправильно	1: Правильно установите параметры энкодера 2: Выполните автоматическую настройку двигателя 3: Установите параметр обнаружения превышения скорости правильно, исходя из реальной ситуации
Ошибка 1 автонастройки двигателя	27	Er.tU1	1: Параметры двигателя задаются не в соответствии с заводской табличкой 2: Время автоматической настройки двигателя истекае.	1: Правильно установите параметры двигателя в соответствии с заводской табличкой 2: Проверьте кабельное соединение между частотным преобразователем и двигателем
Ошибка 2 автонастройки двигателя	28	Er.tU2	1: Параметры двигателя задаются не в соответствии с заводской табличкой 2: Время автоматической настройки двигателя истекает	1: Правильно установите параметры двигателя в соответствии с заводской табличкой 2: Проверьте кабельное соединение между частотным преобразователем и двигателем
Пониженная нагрузка	31	Er.LL	1: Рабочий ток преобразователя частоты ниже заданного значения	1: Убедитесь, выключена ли нагрузка 2: Убедитесь, что нагрузка отключена или что настройка параметров выполнена правильно

Продолжение таблицы 6.1

Наименование ошибки	Код ошибки	Отображение	Возможные причины	Решения
Ошибка чтения, записи EEPROM	32	Er.EEP	1: Запись и чтение происходит слишком часто 2: Чип ЕЕРROM поврежден	1: Обращайтесь к EEPROM реже 2: Замените основную плату управления
Достигнуто время работы	33	Er.TTA	Приход пробного времени инвертора	1: Свяжитесь с агентом или дистрибьютором
Ошибка канала связи 485	34	Er.485	1: Нет ответа от устройства мастера 2: Обрыв линии связи 3: Неверный набор параметров связи	1: Проверьте подключение ПЛК 2: Проверьте линию подключения связи 3: Правильно установите параметры связи
Потеря обратной связи ПИД во время работы	36	Er.FbL	1: Значение настройки обратной связи ПИД < Р40.35 и Р40.36 не равно нулю 2: Значение настройки обратной связи ПИД > Р40.37 и Р40.38 не равно нулю	1: Проверьте сигнал обратной связи ПИД 2: Установите верный параметр P40.35 и P40.37
Пользователь- ская ошибка 1	37	Er.Ud1	Cигнал пользовательской ошибки 1 — вход через DI Cигнал пользовательской ошибки 1 — вход через виртуальный I/O	Сбросьте ошибку Сбросьте ошибку Проверьте настройки параметров цифровых входов
Пользователь- ская ошибка 2	38	Er.Ud2	1: Сигнал пользовательской ошибки 1 — вход через DI 2: Сигнал пользовательской ошибки 1 —вход через виртуальный I/O	1: Сбросьте ошибку 2: Сбросьте ошибку 3: Проверьте настройки параметров цифровых входов

Код ошибки используется для считывания типа ошибки через промышленную сеть, при считывании регистров r25.00, r26.00, r26.08, r26.16, содержимое регистра ответа кодируется ошибкой.

6.2 Тип предупреждения

Предупреждение используется для напоминания и информирования пользователя о текущем состоянии инвертора. При появлении предупреждения кнопочная панель будет отображать предупреждающее сообщение, и оно автоматически сбросится, когда предупреждение будет снято. Некоторые предупреждения требуют, чтобы пользователь проверил причину перед запуском привода, а некоторые не заботятся об этом. Предупреждение используется в качестве мгновенного напоминания, привод не хранит соответствующую информацию.

Бит 12 r27.10 указывает, есть ли в данный момент предупреждающее сообщение.

Таблица 6.2

Наименование предупреждения	Код преду- преждения	Отобра- жение	Причина	Решение
Недостаточное напряжение	1	PoFF	1: Напряжение цепи постоянного тока недостаточно и не может работать нормально	1: Проверьте, нормально ли работает источник питания инвертора
Неверный параметр	2	A.PARA	1: Неверные настройки параметров. Например, режим крутящего момента установлен в режиме управления напряжением/частотой	1: Измените и проверьте проблему совместимости параметров
Состояние сна	5	SLEEP	1: Система находится в спящем состоянии и автоматически запустится, когда спящий режим закончится	1: В основном не нужно обращать на это внимание

Код ошибки используется для считываемого типа предупреждения связи: когда сообщение считывает регистр r25.16, содержимое возвращаемого регистра является кодом предупреждения.

Глава 7 Руководство по выбору вспомогательного оборудования преобразователя

7.1 Руководство по выбору тормозного компонента

Тормозной резистор используется для рассеивания избыточной энергии, когда происходит быстрое замедление или замедляемая нагрузка имеет большой момент инерции. В таких случаях подключение тормозного резистора позволит избежать остановки преобразователя частоты по ошибке превышения напряжения цепи постоянного тока.

При подборе тормозного резистора необходимо обращать внимание на два параметра: сопротивление и мощность резистора. При большой нагрузке и частых торможениях необходимо подобрать резистор с большой мощностью. При выборе сопротивления резистора необходимо обратить внимание на требования преобразователя частоты. Установка резистора с меньшим сопротивлением, чем указано в руководстве, приведет к повреждению преобразователя, а с большим — к уменьшению тормозного момента.

1 Выбор тормозных резисторов

При торможении почти вся возобновляемая энергия двигателя рассеивается на тормозном резисторе.

Формула:

$$R = U^2 / P_p$$

U — тормозное напряжение, когда система тормозит стабильно (для системы переменного тока 400 В обычно берут 700 В);

R — тормозной резистор;

Р_в — мощность торможения.

2 Выбор мощности тормозного резистора

Мощность тормозного резистора можно рассчитать по следующей формуле:

$$P_D = P_D \times \Pi B$$

P_в — мощность тормозного резистора;

ПВ — тормозная частота (процесс торможения составляет долю всего процесса), по условиям нагрузки для определения характеристик общих случаев типичные значения приведены в таблице ниже.

Таблица 7.1 – Тормозная частота простых применений

Прибор	ПВ, %
Элеватор	20÷40
Размотка и намотка	40÷60
Центрифуга	40÷60
Подъемник и кран	40÷60
Общее применение	10

3 Характеристики тормозных резисторов

Таблица 7.2 – Таблица рекомендуемых тормозных резисторов

Трехфазный 400 В		
Модель преобразователя	Рекомендуемая мощность тормозного резистора (ПВ 10 %)	Рекомендуемое значение сопротивления тормозного резистора
K750-33-55N75N	800 BT	≥ 60 0м
K750-33-75N11	1000 Вт	≥ 60 0м
K750-33-1115	1,2 кВт	≥ 25 Om
K750-33-1518	1,5 кВт	≥ 25 Om
K750-33-1822	2,0 кВт	≥ 18 Om
K750-33-2230	2,5 кВт	≥ 18 Om
K750-33-3037	3,0 кВт	≥ 12 Om
K750-33-3745	3,7 кВт	≥ 15 Om
K750-33-4555	4,5 кВт	≥ 8 Om
K750-33-5575	5,5 кВт	≥ 6 OM
K750-33-7590	7,5 кВт	≥ 6 OM
Больше 75 кВт	Согласно требованиям внешнего томозн	ого блока

Таблица 7.3 – Таблица рекомендуемых тормозных модулей

Модель преобразо-	Тормозной модуль	Мощность тормозного	Рекомендуемая	Рекомендуемое зна-
вателя		модуля	мощность тормозного	чение сопротивления
			резистора (ПВ 10 %)	тормозного резистора
K750-33-90110	EC-K751-BU-90	90 кВт	9 кВт	≥ 7,4 OM
K750-33-110132	EC-K751-BU-110	110 кВт	11 кВт	≥ 6,1 OM
K750-33-132160	EC-K751-BU-132	132 кВт	13,2 кВт	≥ 5,1 Ом
K750-33-160185	EC-K751-BU-160	160 кВт	16 кВт	≥ 4,2 OM
K750-33-185200	EC-K751-BU-187	187 кВт	19 кВт	≥ 3,6 0м
K750-33-200220	EC-K751-BU-200	200 кВт	20 кВт	≥ 3,4 OM
K750-33-220250R	EC-K751-BU-220	220 кВт	22 кВт	≥ 3,0 0м
K750-33-250280R	EC-K751-BU-250	250 кВт	25 кВт	≥ 2,7 OM
K750-33-280315R	EC-K751-BU-280	280 кВт	28 кВт	≥ 2,4 OM
K750-33-315355	EC-K751-BU-315	315 кВт	32 кВт	≥ 2,1 OM
K750-33-355400	EC-K751-BU-350	350 кВт	35 кВт	≥ 1,8 OM
K750-33-400450	EC-K751-BU-400	400 кВт	40 кВт	≥ 1,7 OM
K750-33-500560	EC-K751-BU-500	500 кВт	50 кВт	≥ 1,3 0M
K750-33-630	EC-K751-BU-630	630 кВт	63 кВт	≥ 1,2 Oм

Более подробна информация в руководстве по эксплуатации на тормозные модули

7.2 Платы энкодера

Для работы преобразователя частоты в векторном режиме с обратной связью (VC) необходимо установить в преобразователь опциональную плату энкодера.

Таблица 7.4 – Типы поддерживаемых плат энкодера

Модель	Наименование	Описание
EC-K750-PG-INC1	Плата энкодера инкрементального	Поддерживаемые типы выхода энкодера:
	типа	Открытый коллектор
		Push-pull
		Дифференциальный
EC-K750-PG-INC2	Плата энкодера инкрементального	Поддерживаемые типы выхода энкодера:
	типа с аппаратным делителем	Открытый коллектор
		Push-pull
		Дифференциальный
		Доступный делитель выходного сигнала: 0÷63
EC-K750-PG-RT1	Резольвер	Энкодер типа вращающегося трансформатора

1. Описание платы инкрементального энкодера EC-K750-PG-INC1

Таблица 7.5 – Описание клемм платы инкрементального энкодера EC-K750-PG-INC1

Схема клемм платы	Номер	Наимено-	Описание		
	клеммы	вание			
	1, 10	PE	Клеммы подключения энкодера	экрана кабеля	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2, 11	VCC	Источники напряжения: 5 В ± 2 %, максимум 200 мА 12 В ± 5 %, максимум 200 мА		
	3, 12	GND	Общие клеммы		
	4	/Z	Энкодер Z-сигнал		
	5	Z	Энкодер Z + сигнал		
	6	/B	Энкодер В-сигнал		
	7	В	Энкодер В + сигнал		
	8	/A	Энкодер А-сигнал		
	9	A	Энкодер А + сигнал		
	13	/W	Энкодер W-сигнал	Примечание: клеммы UVW	
	14	W	Энкодер W + сигнал	используются для инкре-	
	15	/V	Энкодер V-сигнал	ментального энкодера	
	16	V	Энкодер V + сигнал	синхронного двигателя. Нет необходимости	
	17	/U	Энкодер U-сигнал	подключать, если не исполь-	
	18	U	Энкодер U + сигнал	зуются	

Подключение энкодера типа открытого коллектора и Push-pull

Выберите источник питания энкодера с помощью DIP-переключателя SW3 на плате энкодера.

SW1 и SW2 для энкодеров с открытым коллектором и Push-pull должны быть переведены в положение ОС, как показано на рисунке 7.1.

Рисунок 7.1 — Положение DIP-переключателей для энкодера типа разомкнутого коллектора, Push-pull на плате энкодера EC-K750-PG-INC1

При подключении энкодера к плате, если не используются сигналы /A, /B, /Z, подключаются к клеммам платы только сигналы A. B и Z.

Плата энкодера EC-K750-PG-INC1

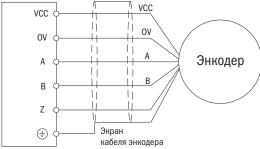


Рисунок 7.2 — Схема подключения энкодеров типа открытого коллектора и Push-pull к плате энкодера EC-K750-PG-INC1

• Подключение энкодера типа дифференциального выхода

Выберите источник питания энкодера с помощью DIP-переключателя SW3 на плате энкодера.

SW1 и SW2 для энкодеров должны быть переведены в положение TP, как показано на рисунке 7.1.

Рисунок 7.3 — Положение DIP-переключателей для энкодера с дифференциальным выходом на плате энкодера EC-K750-PG-INC1

2. Описание платы энкодера инкрементального типа с аппаратным делителем EC-K750-PG-INC2

Типы входных сигналов платы энкодера EC-K750-PG-INC2 — дифференциальный или открытый коллектор. Тип сигнала выбирается DIP-переключателем SW аналогично карте EC-K750-PG-INC1.

Выходной сигнал платы энкодера может быть открытым или дифференциальным коллектором. К выходному сигналу может быть применен аппаратный делитель.

Таблица 7.6 – Описание клемм платы энкодера EC-K750-PG-INC2

хема расположения клемм	Номер клеммы	Наимено- вание	Описание
	_ 1	PE	Клемма подключения экрана кабеля энкодера
10 11 12 13 14 15 16 17 18	2	VCC	Источники напряжения: 5 B ± 2 %, максимум 200 мА 12 B ± 5 %, максимум 200 мА
* * * * * * * * * * * * * * * * * * * 	3	GND	Общая клемма
	4	/Z	Энкодер Z - сигнал
	5	Z	Энкодер Z+ сигнал
	6	/B	Энкодер В- сигнал
	7	В	Энкодер В+ сигнал
[1][1][1][1] ON	8	/A	Энкодер А- сигнал
	9	A	Энкодер А+ сигнал
123456	10	OZ	Импульсный выход Z (тип «открытый коллектор» NPN)
000000	11	ОВ	Импульсный выход В с делителем (тип «открытый коллектор» NPN)
0C 0C 12V	12	OA	Импульсный выход А с делителем (тип «открытый коллектор» NPN)
SW 2 SW 3 SW 3 SW 3	13	/0Z	Z- выходной сигнал с делителем (тип дифференциальный)
TP TP 5V	14	OZ	Z+ выходной сигнал с делителем (тип дифференциальный)
J1	15	/OB	В- выходной сигнал с делителем (тип дифференциальный)
	16	OB	В- выходной сигнал с делителем (тип дифференциальный)
	17	/OA	А- выходной сигнал с делителем (тип дифференциальный)
	18	OA	А+ выходной сигнал с делителем (тип дифференциальный)

ДИП-преключатели соответствуют бит0+бит5 (справа налево, двоичный код) делителя частоты, диапазон делителя равен 0+63. Положение 0 — делитель не применяется, 1 — делитель применяется.

Пример:

Для установки делителя 10 необходимо перевести число в двоичный код. Получается значение 001010.

Следовательно, необходимо справа налево выставить ДИП-переключатели соответственно этому значению.

3. Описание платы резольвера EC-K750-PG-RT1

Таблица 7.7 – Описание клемм платы резольвера EC-K750-PG-RT1

Схема расположения клемм	Номер клеммы	Наимено-	Описание
	1	EXCLO	Положительная клемма питания
			резольвера
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	EXC	Отрицательная клемма питания резольвера
	3	SIN	SIN положительный сигнал
9 8 7 6	4	SINLO	SIN отрицательный сигнал
(тип порта: DB9)	5	COS	COS положительный сигнал
, ,	9	COSLO	COS отрицательный сигнал
	6, 7, 8	NC	Не используются

7.3 Плата расширения входа/выхода (10)

Карта расширения EC-K750-IOEX1 — это карта расширения многофункциональных входов/выходов для преобразователей K750. Она может расширить 4 канала цифрового входа (DI), 2 канала аналогового входа (AI) и 4 канала цифрового выхода (DO). Среди них AI4 может быть использован как обычный аналоговый вход по типу напряжения и может быть использован также для подключения термосопротивления PT100, PT1000 и KTY84-130.

Таблица 7.8 – Описание клемм платы расширения входов/выходов ЕС-К750-IOEX1

Расположение клемм	Номер Наимен клеммы вание		Описание
Подключение к плате управления	1, 10	GND	Аналоговая земля, внутренне изолированная от общего контакта (COM)
1 2 3 4 5 6 7 8 9	2	AI4	Аналоговый вход 4 Вход 0÷10 В: входное полное сопро- тивление 22 КОМ
10 11 12 13 14 15 16 17 18	3, 6, 16	СОМ	Общая клемма +24 B, PT, PLC и цифровых входов и выходов
	4	24V	Источник напряжения + 24 В DC Клемма питания цифровых входов
	5	PLC	Используется для переключения между NPN- и PNP-режимом. С завода поставляется с перемычкой с клеммой +24V. Цифровые выходы работают в режиме NPN
			При использовании внешнего источника питания необходимо снять перемычку
			Клеммы PLC на плате расширения и на плате управления работают отдельно

Продолжение таблицы 7.8

Расположение клемм	Номер клеммы	Наимено- вание	Описание				
Подключение к плате управления 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7	PT (Al4)	Поддерживае РТ100/РТ100 КТY84-130 АI4 неактиве использовані функции подічения датчик температуры Положение D режим работ	00/ н при ии клю- :a IP-перек	OFF OSW1 S		
			DIP	SW1	SW2	SW3	
			AI4	ON	ON	ON	
			PT100	OFF	OFF	OFF	
			PT1000	OFF	OFF	ON	
			KTY84-130	OFF	ON	ON	
	8	DI9	Цифровой вх	од 9	Входна частот 0÷200	a:	
	9	DI7	Цифровой вх	фровой вход 7		Диапазон напряжения: 0÷30 В	
	11	AI3	Аналоговый вход 3, вход 0÷10 В) B		
	12	D06	Цифровой вь Открытый кол		Диапа	зон жения:	
			Цифровой выход 4 Открытый коллектор		B DC		
	14	D05	Цифровой выход 5 Открытый коллектор Цифровой выход 3 Открытый коллектор				
	15	D03					
	17	DI8	Цифровой вх		Входна частот 0÷200	a:	
	18	DI6	Цифровой вх	од 6	Диапа	зон жения:	

7.4 Плата расширения CANopen

Коммуникационная плата EC-K750-CAN1 — это коммуникационная плата CANopen для подключения инверторов K750 к сети CANopen. Обратите внимание, что канал связи CANopen не может использоваться одновременно с каналом связи Modbus.

Характеристики изделия:

- Поддерживает протокол защиты узла (Node Guard protocol), мастер-станция может использовать эту функцию для запроса состояния прибора.
- Поддерживает протокол контрольного сигнала (Heartbeat protocol), и подчиненная станция периодически сообщает текущее состояние ведущей станции.
- SDO (сервисный объект данных) поддерживает только ускоренный механизм передачи, который может передавать до 4 байт и может использоваться для чтения и записи параметров инвертора.
- Поддерживает 4 группы PDO (переносимый распределенный объект).

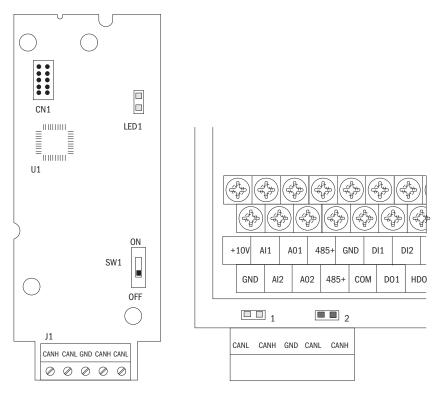


Рисунок 7.4 — Коммуникационная плата CANopen и схема установки

Таблица 7.9 – Описание платы CANopen

Обозначение	Название	Описание функции
J1	Клеммы	Клеммная колодка шины CANopen
LED1	Индикатор питания	Загорается для обозначения нормального электропитания
Световой инди- катор: Желтый свет (1) Красный свет (2)	Индикатор состояния	Рабочее состояние и индикация неисправностей: Желтый свет (1) горит: указывает на нормальную работу Желтый свет (1) мигает: указывает инициализацию канала связи Красный свет (2) горит: указывает на внутреннюю неисправность канала связи Красный свет (2) мигает: указывает на неисправность канала связи САNореп или отключение шины
SW1	DIP-переключатель	Нагрузочный резистор на выходных зажимах для согласования шины CANopen

Таблица 7.10 – Описание клеммника Ј1

Номер	Расшифровка	Описание функции
1, 4	CANH	Положительная линия
2, 5	CANL	Отрицательная линия
3	GND	Заземление

7.5 Плата расширения Profinet

Плата расширения EC-K750-Profinet обеспечивает мониторинг и управление по протоколу Profinet. Подробности в 32 группе параметров.

7.6 Плата расширения EC-K750-DSP

Плата поддержки пульта управления ПЧ с интегрированной актуальной версией прошивки. Необходима для реализации актуальных прошивок (в т.ч. с использованием плат расширения Profinet, Modbus TCP)

7.7 Плата расширения STO

Плата функции безопасного отключения момента STO.

Таблица 7.11 — Описание платы STO

Тип	Символ клеммы	Название клеммы	Описание функции
Bход STO STOP		Общая входная клемма STO	Применяется для переключения высокого и низкого уровня входа STO, короткое замыкание на 24 В, т. е. действителен высокий уровень входа STO1N или низкий STO2N.
			При использовании в качестве внешнего источника питания необходимо разомкнуть STOP и +24B.
	STO1N	Вход STO1	Вход STO1, замыкается по умолчанию на COM, т.е. STO1 недействителен.
			Гальванически развязанный вход через оптрон
			Диапазон напряжения: 10~30 B
	STO2N	Вход STO2	Вход STO2, замыкается по умолчанию на COM, т.е. STO2 недействителен.
			Гальванически развязанный вход через оптрон
			Диапазон напряжения: 10~30 B

Продолжение таблицы 7.11

Тип	Символ клеммы	Название клеммы	Описание функции	
Выход STO	STO/OUT	Выход мониторинга безопасности	Выход состояния контура мониторинга (выход с открытым коллектором), т.е. когда входы STO1, STO2 действительны, выход	
	STO/COM	Выход мониторинга безопасности	STO/OUT тоже действителен.	

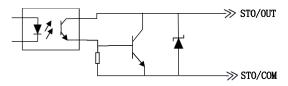


Рисунок 7.5 — Описание функций выхода клемм STO

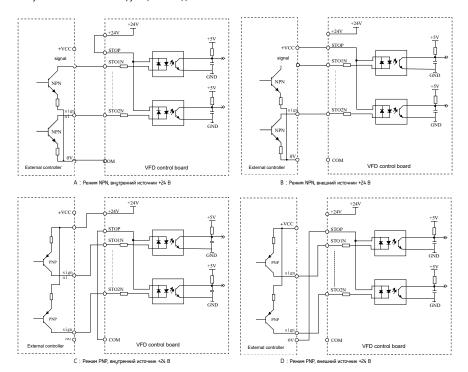


Рисунок 7.6 — Описание функций входа клемм STO

При использовании внешнего источника питания необходимо разомкнуть STOP и +24 B, STO1N и COM. STO2N и COM.

При размыкании STO1N или STO2N будет сообщение об ошибке «Er.STO», для сброса необходимо нажать «STOP».

Внутреннее сопротивление входа STO составляет 3,0 кОм.

Глава 8 Ежедневное техническое обслуживание преобразователей частоты

8.1 Ежедневное техническое обслуживание

Из-за влияния температуры, влажности, пыли и вибрации может возникнуть плохое тепловыделение и старение компонентов преобразователя частоты, что приведет к потенциальному отказу или сокращению срока его службы. Поэтому необходимо проводить ежедневное и регулярное техническое обслуживание преобразователя частоты.

8.1.1 Ежедневное техническое обслуживание

Ежедневная проверка параметров:

- 1. Проверьте, является ли звук нормальным во время работы двигателя.
- 2. Проверьте, есть ли вибрация во время работы двигателя.
- 3. Проверьте, изменилась ли среда установки преобразователя частоты.
- Проверьте, правильно ли работает вентилятор преобразователя частоты. Проверьте наличие пыли в системе воздушного охлаждения (радиаторе) преобразователя частоты.
- 5. Проверьте, не перегревается ли преобразователь частоты.
- 6. Убедитесь, что преобразователь частоты содержится в чистом состоянии.
- Удалите пыль с поверхности преобразователя частоты, предотвратите попадание пыли внутрь преобразователя, особенно металлической.
- 8. Очистите вентилятор охлаждения преобразователя частоты от масла и пыли.

8.1.2 Регулярные проверки

Пожалуйста, регулярно проверяйте преобразователь частоты, особенно труднодоступные места работы.

Регулярные осмотры изделий:

- 1. Проверяйте воздуховод и регулярно очищайте его.
- 2. Проверьте, нет ли ослабленных винтов.
- 3. Проверьте, не подвергся ли преобразователь коррозии.
- 4. Проверьте, нет ли на клеммах проводки признаков образования дуги.

8.2 Замена изнашиваемых деталей

Срок службы инвертора тесно связан с окружающей средой и используемыми условиями технического обслуживания. В таблице 8.1 для справки приведены сроки замены и причины повреждения основных компонентов. Кроме того, если во время технического обслуживания обнаружено нарушение, пожалуйста, своевременно устраните его.

Таблица 8.1 — Срок замены запасных деталей

Запасные детали	Срок замены	Причины нарушений	Как проверить
Вентилятор	30 000÷60 000 ч	Износ подшипников, старение лопастей	1: Лопасти имеют трещины 2: Ненормальная вибрация, чрез- мерный шум
Электролитический конденсатор	40 000÷50 000 ч	Плохое качество входной мощности, высокая температура окружающей среды, низкое давление воздуха, частые изменения нагрузки, старение электролита	1: Утечка электролита 2: Предохранительный клапан выступает наружу 3: Значение емкости находится за пределами допустимого диапазона 4: Сопротивление изоляции в недопусков 5: Пульсации напряжения шины постоянного тока слишком большие
Реле	50 000÷100 000 pas	Коррозия, пыль влияют на контактное воздействие, контактное действие слишком часто	Плохой контакт

Пользователь может ссылаться на накопленное время включения питания и накопленное время работы, записанное инвертором, а также комбинировать фактические условия эксплуатации и внешнюю среду для определения периода замены.

- Возможные причины повреждения вентилятора охлаждения: износ подшипника и старение лопасти. Износом считаются любые трещины в лопастях вентилятора, любые аномальные вибрации при запуске преобразователя частоты.
- Возможные причины повреждения электролитического конденсатора: низкое качество входного источника питания, высокая температура окружающей среды, частое изменение нагрузки и старение электролита. Износом считается любая утечка электролита, если предохранительный клапан выступает, ненормальная емкость и сопротивление изоляции.

8.3 Детали гарантии

- 1. Гарантийный срок на преобразователь частоты указан в паспорте изделия.
- 2. В случае использования преобразователя не по назначению или в следующих случаях преобразователь частоты снимается с гарантии:
 - а) пользователи не следуют правилам, изложенным в руководстве, что приводит к повреждению преобразователя частоты;
 - б) ущерб, причиненный пожаром, наводнением и нормальным напряжением;
 - в) повреждение, вызванное использованием преобразователя частоты для аномальных функций;
 - г) механическое повреждение преобразователя;
 - д) подключение и эксплуатация производились низкоквалифицированным персоналом.

Приложение А Протокол канала связи Modbus

Преобразователь частоты K750 обеспечивает связь с помощью интерфейса RS485 по протоколу связи MODBUS. Пользователь может осуществлять централизованный контроль через ПК/ПЛК, подать команду преобразователю, изменить или прочитать коды параметров, рабочее состояние или информацию об ошибке преобразователя частоты с помощью протокола связи Modbus. Кроме того, преобразователь частоты K750 также может использоваться в качестве устройства Master для управления другими преобразователями K750.

А.1 Формат протокола

RS485 асинхронная полудуплексная передача.

Формат данных настройки по умолчанию RS485: 1-8-N-1 (1 стартовый бит, 8 битов данных, без бита четности, 1 стоповый бит), настройка по умолчанию скорости передачи данных: 9600 бит/с. См. настройку группы параметров 30.

А.2 Формат сообщения

 Сообщение Modbus преобразователя K750 включает стартовый знак, сообщение RTU и конечный знак.

Рисунок A.1 — Структура посылки по протоколу MODBUS

RTU-сообщение включает код адреса, PDU (единица протокольных данных) и проверку CRC (вычисление и коррекция контрольной суммы). PDU (единица протокольных данных) включает код функции и раздел данных.

Таблица A.1 — Формат кадра устройства связи с объектом(RTU):

Запуск кадра (старт)	Время передачи — более чем 3,5 байта		
Заданный адрес станции (ADR)	Адрес канала связи: 1 до 247 (0: широковещательный адрес)		
Код команды (CMD)	Код команды	Описание	
	0×03	Считывает регистры многократной длины привода переменного тока	
	0×06	Записывает регистр на привод переменного тока	
	0×10	Записывает регистры многократной длины на привод переменного тока	
	0×08	Код команды диагностики	
Количество кодов функции	Включая адрес регистра (2 байта), количество регистров n (2 байта) и содержи регистра (2n байтов) и т. д.		
Низкий уровень CRC CHK	Указывает на ответные данные или данные, ожидающие записи. Контрольное		
Высокий уровень CRC CHK	значение CRC 16, во время передачи высокий бит помещается спереди, а низкі бит — сзади		
Конец кадра	Время передачи — более чем 3,5 байта		

А.З Инструкция для кода команды

А.3.1 Код команды 0x03. Считывает регистры многократной длины или слова состояния

Таблица A.2 — Запрос данных PDU

Код команды	1 байт 0×03	
Исходный адрес	2 байта	0×0000÷0×FFFF (старшие 8 бит спереди)
Количество регистров	2 байта	0×0001 — 0×0010 (1÷16, старшие 8 бит спереди)

Таблица А.3 — Ответ PDU

Код команды	1 байт	0×03
Исходный адрес	1 байт	2n (n означает количество регистров)
Количество регистров	2 * n байта Регистровое значение высокое — 8 бит спереди, сначала отпра	
		начальное значение регистра адреса

Таблица А.4 — Неверный PDU

Код команды	1 байт	0×83
Аномальный код	1 байт	См. раздел «Информация об аномальном ответе»

А.3.2 Код команды 0×06 . Записывает одиночный регистр или коды команд слова состояния

Таблица A.5 — Запрос данных PDU

Код команды	1 байт	0×06
Исходный адрес	2 байта	0×0000÷0×FFFF (старшие 8 бит спереди)
Значение регистра	2 байта	0×0000÷0×FFFF (старшие 8 бит спереди)

Таблица A.6 — Ответ PDU

Код команды	1 байт	0×06
Адрес регистра	2 байта	0×0000÷0×FFFF
Значение регистра	2 байта	0×0000÷0×FFFF

Таблица A.7 — Неверный PDU

Код команды	1 байт	0×86
Аномальный код	1 байт	См А.4 «Информация об аномальном ответе»

А.3.3 Команда 0×10 записывает регистры многократной длины или коды команд слова состояния

Таблица A.8 — Запрос данных PDU

Код команды	1 байт	0×10	
Исходный адрес	2 байта	0×0000÷0×FFFF (старшие 8 бит спереди)	
Номер регистра	2 байта	0×0000÷0×FFFF (старшие 8 бит спереди)	
Номер байта	1 байт	2n (n означает количество регистров)	
Значение регистра	2 * n байт	Регистровое значение высокое — 8 бит спереди, сначала отправьте	
		начальное значение регистра адреса	

Таблица A.9 — Ответ PDU

Код команды	1 байт	0×10
Исходный адрес	2 байта	0×0000÷0×FFFF (старшие 8 бит спереди)
Номер регистра	2 байта	0×0000÷0×FFFF (старшие 8 бит спереди)

Таблица A.10 — Неверный PDU

Код команды	1 байт	0×90
Аномальный код	1 байт	См. «Информация об аномальном ответе»

А.3.4 Код команды 0×08. Функция диагностики

- Код команды Modbus 0×08 обеспечивает серию тестов для проверки системы связи между клиентским (ведущим) устройством и сервером (ведомым) или различными внутренними условиями ошибки в сервере.
- Эта функция использует код подкоманды 2-байтного запроса для определения типа теста, который должен быть выполнен. Сервер копирует коды команд и подкоманд в обычный ответ. Некоторые диагностики приводят к тому, что удаленное устройство возвращает данные через нормально реагирующие поля данных.
- Диагностические функции удаленных устройств обычно не влияют на пользовательскую программу, запущенную в устройстве. Основная диагностическая функция этого продукта — нелинейная диагностика (0000), используемая для проверки центральной линии связи.

Таблица A.11 — Запрос данных PDU

Код команды	1 байт	0×08
Код подкоманды	2 байта	0×0000÷0×FFFF
Данные	2 байта	0×0000÷0×FFFF

Таблица A.12 — Ответ PDU

Код команды	1 байт	0×08
Код подкоманды	2 байта	0×0000
Данные	2 байта	Совпадает с запросом PDU

Таблица A.13 — Неверный PDU

Код команды	1 байт	0×88
Аномальный код	1 байт	См. «Информация об аномальном ответе»

А.4 Информация об аномальном ответе

Когда ведущее устройство посылает запрос ведомому устройству, ведущее устройство ожидает нормального ответа. Запрос мастера может привести к одному из четырех событий:

- Если ведомое устройство получает запрос на ошибку связи и запрос может быть обработан нормально, ведомое устройство вернет нормальный ответ.
- 2. Если ведомое устройство не получает запрос из-за ошибки связи, никакая информация не может быть возвращена, и время ожидания ведомого устройства истекает.
- Если ведомое устройство получает запрос и обнаруживает ошибку связи (четность, адрес, ошибку кадрирования и т. д.), ответ не возвращается, и время ожидания ведомого устройства истекает.
- 4. Если ведомое устройство не получает запрос ошибки связи, но не может обработать запрос (например, адрес регистра не существует и т. д.), ведомая станция вернет аномальный ответ, чтобы сообщить основному устройству о фактической ситуации.

Код команды аномального ответа = код команды нормального ответа + 0 \times 80.

Таблица А.14 — Аномальный ответ

Код ошибки	Наименование	Описание
0×01	Недействительный код команды/код функции ошибки	Код функции, полученный ведомым устройством, находится за пределами настроенного диапазона
0×02	Адрес данных ошибки/несуществующий адрес регистра	Адрес не существует или запрещены чтение и запись. При записи регистров многократной длины количество байтов в PDU не равно количеству регистров
0×03	Неверный формат кадра	Длина кадра некорректна Проверка CRC не пройдена
0×04	Данные выходят из допустимого диапазона	Данные, полученные ведомым устройством, превышают соответствующий регистровый минимум до максимального диапазона
0×05	Отклонение запроса на чтение	Работает только для чтения регистра записи Работает только для чтения регистра записи в рабочем статусе

А.5 Проверка CRC

CRC (циклический контроль избыточности) использует кадр RTU, сообщение включает в себя поле обнаружения ошибок, основанное на методе CRC. Поле CRC проверяет содержимое всего сообщения. Поле CRC — это два байта, содержащие двоичное значение 16 бит. Оно вычисляется передающим оборудованием и добавляется к сообщению. Принимающее устройство пересчитывает CRC принятого сообщения и сравнивает его со значением в поле полученного CRC. Если два значения CRC не равны, то возникает ошибка в передаче.

А.6 Распределение адресов регистра

Область регистров — это 16-битные данные. Старшие 8 бит представляют собой номер группы кода параметра, младшие 8 бит представляют собой номер группы, старшие 8 бит отправляются раньше. 32-разрядный регистр занимает два соседних адреса, четный адрес хранит младшие 16 бит, а следующий адрес (нечетный адрес) четного адреса хранит старшие 16 бит.

В операции записи регистра, чтобы избежать частых повреждений, вызванных записью памяти EEPROM (ЭСППЗУ), использование самого старшего бита адреса регистра указывает, будет ли он сохранен как EEPROM. Самый старший бит, который должен быть 1, указывает на сохранение в EEPROM, 0 означает сохранение только в оперативной памяти. Другими словами, если вы хотите записать значение регистра, которое сохраняется после выключения питания, вы должны добавить 0×8000 к исходному адресу регистра.

Таблица А.15 — Адреса регистров

Адрес регистра 0×0000÷0×6363 (область адресов регистров параметров)		Описание	
		Правило: старшие 8 цифр шестнадцатеричного числа указывают номер группы (от 0 до 99), а младшие 8 цифр указывают номер внутри группы (от 0 до 99) Пример 1: Код функции 27.10 (слово состояния привода 1), шестнадцатеричный адрес которого: 0×180A (0×18 = 27, 0×0A = 10), десятичный адрес: 27 × 256 + 10 = 6922 Пример 2: Код функции 14.01 (цифровая настройка задания момента), когда не сохраняется в ЕЕРROM, его шестнадцатеричный адрес: 0×0E01 (0×0E = 14, 0×01 = 1), десятичный адрес: 14 × 256 + 1 = 3585 Если вы хотите сохранить содержимое, записанное в канале связи в ЕЕРROM после выключения питания, то шестнадцатеричный адрес равен 0×8E01 (0×0E01 плюс 0×8000) Десятичный адрес: 36353 (3585 плюс 32768) Примечание: адреса, вычисляемые в шестнадцатеричном или десятичном формате, одинаковы, и пользователи могут выбрать знакомый метод расчета	
Адрес регистра 0×7000		Команда канала связи. Значения и функции следующие: 0×0000: Команда «СТОП» 0×0001: Пуск вперед 0×0002: Реверс 0×0003: Толчок вперед 0×0004: Толчок в обратную сторону 0×0005: Выбег 0×0006: Останов с замедлением 0×0007: Экстренный останов 0×0008: Сброс ошибки	
	0×7001	Задание частоты вращения. Единица этого регистра может быть установлена параметром P30.14 (по умолчанию 0,01 %) 0,01 % (-100,00÷100,00 %) 0,01 Гц (0÷600,00 Гц) 1 об/мин (0÷65535 об/мин)	
	0×7002	Задание крутящего момента 0,01 % (-300,00÷300,00 %)	
	0×7003	Задание верхнего предела частоты вращения. Единица этого регистра может быть установлена параметром РЗ0.14 Диапазон единиц совпадает с 0×7001	
	0×7004	Предел скорости управления моментом. Единица этого регистра может быть установлена параметром РЗО.14 Разный диапазон единиц совпадает с 0×7001	
	0×7005	Предел крутящего момента 0,1 % (0÷300,0 %)	
	0×7006	Предел тормозного момента 0,1 % (0÷300,0 %)	
	0×7007	Уставка ПИД 0,01 % (-100,00÷100,00 %)	
	0×7008	Обратная связь ПИД 0,01 % (-100,00÷100,00 %)	
	0×7009	Задание напряжения раздельной кривой напряжения/частоты 0,1 % (0÷100,0 %)	
	0×700A	Настройка внешней ошибки	

Продолжение таблицы А.15

Адрес реги	стра	Описание						
	0×700B	Настройка состояния DO. Когда функция DO (пожалуйста, обратитесь к PO7.01÷PO7.10) установлена на O (без функции), ее состояние исходит из настройки выделенного регистра связи, и соответствующий бит 1 означает, что она включена. Биты этого регистра определяются следующим образом:						
			БИТ 6	БИТ 5	БИТ 4	БИТ 3	БИТ 2	БИТ 1
						RL2	RL1	D02
		БИТ 15	БИТ 14	БИТ 13	БИТ 12	БИТ 11	БИТ 10	БИТ 9
								VD02

- 2. Состояние инвертора: прочитайте состояние инвертора, см. группу параметров 27.
- 3. Описание неисправности инвертора: прочитайте неисправность инвертора, см. параметр 25.00 (0 \times 1900).

Таблица А.16 — Описание ошибок

Адресс неисправности	Информация об ошибке			
0×1900	0000: Нет неисправности	0015: Ошибка обнаружения тока		
(код парметра 25.00)	0001: Защита служебного канала	0016: Ошибка обратной связи карты PG		
	0002: Превышение тока во время уско-	0017: Обнаружение неисправности нуля		
	рения	энкодера		
	0003: Превышение тока во время замед-	0018: Зарезервировано		
	ления	0019: Превышение скорости		
	0004: Превышение тока при постоянной	001А: Очень большое отклонение скорости		
	скорости	001В: Ошибка автонастройки двигателя 1		
	0005: Перенапряжение во время ускорения	001С: Ошибка автонастройки двигателя 2		
	0006: Перенапряжение во время замед-	001D: Ошибка автонастройки двигателя 3		
	ления	001Е: Ошибка автонастройки двигателя 4		
	0007: Перенапряжение при постоянной	001F: Пониженная нагрузка		
	скорости	0020: Ошибка чтения и записи EEPROM		
	0008: Низкое напряжение	0021: Зарезервировано		
	0009: Разомкнутый контактор	0022: Ошибка истечения времени связи		
	000А: Перегрузка преобразователя	0023: Ошибка платы расширения		
	000В: Перегрузка двигателя	0024: Потеря обратной связи ПИД во время		
	000С: Потеря входной фазы	работы		
	000D: Потеря входной фазы	0025: Пользовательская ошибка 1		
	000E: Перегрев модуля IGBT	0026: Пользовательская ошибка 2		
	000F: Зарезервировано			
	0010: Перегрев двигателя			
	0011: Ошибка быстрого перерыва сверхтока			
	0012: Замыкание на землю			
	0013: Зарезервированная неисправность			
	автоматической настройки двигателя			
	0014: Ошибка обнаружения температуры			
	приводов			

А.7 Тип данных регистра

Таблица А.17 — Типы регистров

Типы данных регистра	Метод настройки канала связи				
16-бит беззнаковое число	0÷65535 соответствует 0×FFFF; без точки. Пример: установить РОО.07 на 40,00 Гц: запишите 0×0FA0 в адресе 0×0007				
16-бит число со знаком	-32768 ÷ 32767 соответствует 0×8000÷0×7FFFF Пример: записать в P14.01 50,0 %: Запишите 0×FE0C в 0×0E01-адрес				
Двоичное число	Представляет собой значение 16 бит Например, содержимое адреса 0×0600 равно 0×0012, что означает: бит 1 г06.00 = 1, бит 4 = 1; то есть DI1 и 5 (HDI) включены				
Тип «сто тысяч»	«Единицы» \div «Тысячи» соответствует 0 \div 3 бит, 4 \div 7 бит, 8 \div 11 бит, 12 \div 15 бит соответственно Пример: установите разряд единиц Р40.04 на Al1 и разряд десяток на Al2: запишите 0 \times 0021 в адрес 0 \times 2804				
32-бит беззнаковое число	Содержимое двух регистров необходимо объединить в 32-разрядные числа Например, чтение показаний счетчика r16.00: Шаг 1: Читаем 2 регистра с начального адреса 0×1000 Шаг 2: Считывание счетчика электроэнергии = ((единица 32)0×значение1001 <<16) + 0×1000 значение				
32-бит число со знаком	Аналогично 32-битным беззнаковым числам. Значение четного адреса по-прежнему составляет нижние 16 бит, а значение следующего адреса (нечетное число) четного адреса указывает на верхние 16 бит				

А.8 Инвертор выступает в качестве ведущего устройства Modbus

K750 можно использовать как мастер-станцию Modbus, в настоящее время она поддерживает только широковещательную сеть. Когда P30.09 установлен как 1, мастер-режим может быть включен. Вещательный кадр главной станции (главного преобразователя) выглядит следующим образом:

0×00	0×06	0×70	N	ValH	ValL	CRCL	CRCH

Рисунок А.2 — Формат кадра главного преобразователя

Инструкция:

- 1. N указывает на подчиненный регистр работы, который установлен параметром РЗО.10.
- Val означает отправленные данные, Val = (ValH << 8) + ValL, код функции P30.11 должен выбирать содержание отправленных данных.
- 3. Состояние ожидания между кадрами и кадр устанавливается кодом функции Р30.12.